A Machine Learning-Based Approach to Railway Logistics Transport Path Optimization

被引:3
|
作者
Cao, Ke [1 ]
机构
[1] Hebei Railway Transportat Vocat & Tech Coll, Railway Transportat Dept, Shijiazhuang 050051, Hebei, Peoples R China
关键词
TRAFFIC CONTROL; SIMULATION;
D O I
10.1155/2022/1691215
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the rapid development of high-speed railways, the continuous improvement of the road network, and the leapfrog increase in demand for cross-line passenger travel, the connectivity between cities is also increasing. The network structure has gradually evolved from a single line structure to a complex network structure, and the routes connecting city nodes are no longer unique. At this stage, there are multiple effective routes between destinations on the network, and the choice of train routes has diversified. Different options for interline trains have different degrees of impact on line and station operations. Therefore, this study constructed a deep learning CNN-GRU combined model to predict the traffic speed of railway logistics. The model used a convolutional neural network (CNN) to extract the spatial characteristics of speed data and GRU to extract the time characteristics of speed data. The experiment proved that the prediction accuracy of the combined model was better than that of the single GRU and CNN models. Finally, a multi-objective optimization model with the shortest total train running distance, the shortest total train running time, and the least influence on road sections is constructed using the prediction results.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A Machine learning-based approach to determining stress in rails
    Belding, Matthew
    Enshaeian, Alireza
    Rizzo, Piervincenzo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 639 - 656
  • [32] Evaluating a Machine Learning-based Approach for Cache Configuration
    Ribeiro, Lucas
    Jacobi, Ricardo
    Junior, Francisco
    da Silva, Jones Yudi
    Silva, Ivan Saraiva
    2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2022, : 180 - 183
  • [33] Predicting mergers & acquisitions: A machine learning-based approach
    Zhao, Yuchen
    Bi, Xiaogang
    Ma, Qing-Ping
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 99
  • [34] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [35] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [36] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [37] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [38] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [39] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Liu, Yongjun
    Liu, Yao-Zhong
    Sun, Lifu
    Zen, Yoh
    Inomoto, Chie
    Yeh, Matthew M.
    VIRCHOWS ARCHIV, 2022, 481 (01) : 49 - 61
  • [40] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):