Synchronization of spatiotemporal nonlinear dynamical systems by an active control

被引:43
作者
Codreanu, S [1 ]
机构
[1] Univ Babes Bolyai, Dept Theoret Phys, R-3400 Cluj Napoca, Romania
关键词
D O I
10.1016/S0960-0779(02)00128-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The approach we present in this work examines the synchronization of unidirectionally coupled nonlinear partial differential equations (PDEs) by an active control. It is a generalization of the method used by us to synchronize chaotic systems, described by one- or two-dimensional maps. The considered pair of PDEs are Fisher-Kolmogorov's equations, the synchronization of which we studied both analytically and numerically. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:507 / 510
页数:4
相关论文
共 14 条
  • [1] Synchronization of two Lorenz systems using active control
    Bai, EW
    Lonngren, KE
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (01) : 51 - 58
  • [2] INVERSE SOLUTION FOR SOME TRAVELING-WAVE REACTION DIFFUSION-PROBLEMS
    BORZI, C
    FRISCH, HL
    GIANOTTI, R
    PERCUS, JK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 4823 - 4830
  • [3] DIFFUSION IN NONLINEAR MULTIPLICATIVE MEDIA
    CANOSA, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1862 - &
  • [4] An indirect synchronization of chaotic trajectories
    Codreanu, S
    Savici, A
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (05) : 845 - 850
  • [5] CODREANU S, 2000, ROMANIAN REP PHYS, V52, P225
  • [6] The wave of advance of advantageous genes
    Fisher, RA
    [J]. ANNALS OF EUGENICS, 1937, 7 : 355 - 369
  • [7] Kolmogorov A., 1937, Bull. Moscow State Univ. Ser. A: Math. Mech, V1, P1
  • [8] Nonlinear waves in reaction-diffusion systems: The effect of transport memory
    Manne, KK
    Hurd, AJ
    Kenkre, VM
    [J]. PHYSICAL REVIEW E, 2000, 61 (04): : 4177 - 4184
  • [9] Mikhailov AS, 1994, FDN SYNERGETICS
  • [10] Murray J. D., 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4