Eigenvalue inequalities for Schrodinger operators on unbounded Lipschitz domains

被引:6
作者
Behrndt, Jussi [1 ]
Rohleder, Jonathan [2 ]
Stadler, Simon [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Stockholms Univ, Matemat Inst, S-10691 Stockholm, Sweden
基金
奥地利科学基金会;
关键词
Eigenvalue inequality; Schrodinger operator; Dirichlet; Neumann and Robin boundary condition; unbounded Lipschitz domain; elliptic differential operator; DIRICHLET;
D O I
10.4171/JST/203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Schrodinger differential expression on an exterior Lipschitz domain we prove strict inequalities between the eigenvalues of the corresponding selfadjoint operators subject to Dirichlet and Neumann or Dirichlet and mixed boundary conditions, respectively. Moreover, we prove a strict inequality between the eigenvalues of two different elliptic differential operators on the same domain with Dirichlet boundary conditions.
引用
收藏
页码:493 / 508
页数:16
相关论文
共 50 条
[41]   Estimates for the optimal constants in multipolar Hardy inequalities for Schrodinger and Dirac operators [J].
Bosi, Roberta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) :533-562
[42]   Improved sharp spectral inequalities for Schrodinger operators on the semi-axis [J].
Schimmer, Lukas .
JOURNAL OF SPECTRAL THEORY, 2023, 13 (01) :47-62
[43]   NON AUTONOMOUS PARABOLIC PROBLEMS WITH UNBOUNDED COEFFICIENTS IN UNBOUNDED DOMAINS [J].
Angiuli, L. ;
Lorenzi, L. .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2015, 20 (11-12) :1067-1118
[44]   On the spectral gap of higher-dimensional Schrodinger operators on large domains [J].
Kerner, Joachim ;
Taeufer, Matthias .
ASYMPTOTIC ANALYSIS, 2023, 133 (1-2) :77-89
[45]   Lipschitz Regularity of the Eigenfunctions on Optimal Domains [J].
Bucur, Dorin ;
Mazzoleni, Dario ;
Pratelli, Aldo ;
Velichkov, Bozhidar .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 216 (01) :117-151
[46]   Eigenvalue problems for one-dimensional discrete Schrodinger operators with symmetric boundary conditions [J].
Juang, J ;
Lin, WW ;
Shieh, SF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (02) :524-533
[47]   Sharp Maximal Function Inequalities and Boundedness for Commutators of Riesz Transforms of Schrodinger Operators [J].
Liu, Lanzhe .
NOTE DI MATEMATICA, 2011, 31 (02) :53-66
[48]   Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials [J].
Frank, Rupert L. ;
Laptev, Ari ;
Lieb, Elliott H. ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) :309-316
[49]   BOUND ON THE NUMBER OF NEGATIVE EIGENVALUES OF TWO-DIMENSIONAL SCHRODINGER OPERATORS ON DOMAINS [J].
Frank, R. L. ;
Laptev, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (03) :573-589