Eigenvalue inequalities for Schrodinger operators on unbounded Lipschitz domains

被引:6
作者
Behrndt, Jussi [1 ]
Rohleder, Jonathan [2 ]
Stadler, Simon [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Stockholms Univ, Matemat Inst, S-10691 Stockholm, Sweden
基金
奥地利科学基金会;
关键词
Eigenvalue inequality; Schrodinger operator; Dirichlet; Neumann and Robin boundary condition; unbounded Lipschitz domain; elliptic differential operator; DIRICHLET;
D O I
10.4171/JST/203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Schrodinger differential expression on an exterior Lipschitz domain we prove strict inequalities between the eigenvalues of the corresponding selfadjoint operators subject to Dirichlet and Neumann or Dirichlet and mixed boundary conditions, respectively. Moreover, we prove a strict inequality between the eigenvalues of two different elliptic differential operators on the same domain with Dirichlet boundary conditions.
引用
收藏
页码:493 / 508
页数:16
相关论文
共 50 条
[32]   Upper bounds on the eigenvalue ratio for one-dimensional Schrodinger operators [J].
Huang, Min-Jei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) :1031-1039
[33]   Weighted Norm Inequalities for Area Functions Related to Schrodinger Operators [J].
Tang, L. ;
Wang, J. ;
Zhu, H. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (01) :38-50
[34]   Eigenvalue inequalities for the Laplacian with mixed boundary conditions [J].
Lotoreichik, Vladimir ;
Rohleder, Jonathan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :491-508
[35]   Spectral dimension and Bohr's formula for Schrodinger operators on unbounded fractal spaces [J].
Chen, Joe P. ;
Molchanov, Stanislav ;
Teplyaev, Alexander .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (39)
[36]   Manifold Decompositions and Indices of Schrodinger Operators [J].
Cox, Graham ;
Jones, Christoper K. R. T. ;
Marzuola, Jeremy L. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (05) :1573-1602
[37]   Eigenvalue excluding for perturbed-periodic one-dimensional Schrodinger operators [J].
Nagatou, Kaori ;
Plum, Michael ;
Nakao, Mitsuhiro T. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2138) :545-562
[38]   An isoperimetric type inequality for the principal eigenvalue of Schrodinger operators depending on the curvature of a loop [J].
Stefanopoulos, Vangelis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :115-132
[39]   Potential type operators and transmission problems for strongly elliptic second-order systems in Lipschitz domains [J].
Agranovich, M. S. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (03) :165-183
[40]   On eigenvalue inequalities of the Newton potential [J].
Kal'menov, Tynysbek ;
Suragan, Durvudkhan ;
Sabitbek, Bolys .
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676