Eigenvalue inequalities for Schrodinger operators on unbounded Lipschitz domains

被引:6
作者
Behrndt, Jussi [1 ]
Rohleder, Jonathan [2 ]
Stadler, Simon [1 ]
机构
[1] Graz Univ Technol, Inst Angew Math, Steyrergasse 30, A-8010 Graz, Austria
[2] Stockholms Univ, Matemat Inst, S-10691 Stockholm, Sweden
基金
奥地利科学基金会;
关键词
Eigenvalue inequality; Schrodinger operator; Dirichlet; Neumann and Robin boundary condition; unbounded Lipschitz domain; elliptic differential operator; DIRICHLET;
D O I
10.4171/JST/203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Schrodinger differential expression on an exterior Lipschitz domain we prove strict inequalities between the eigenvalues of the corresponding selfadjoint operators subject to Dirichlet and Neumann or Dirichlet and mixed boundary conditions, respectively. Moreover, we prove a strict inequality between the eigenvalues of two different elliptic differential operators on the same domain with Dirichlet boundary conditions.
引用
收藏
页码:493 / 508
页数:16
相关论文
共 50 条
[21]   Sobolev-like cones of trace-class operators on unbounded domains: Interpolation inequalities and compactness properties [J].
Mayorga-Zambrano, J. ;
Salinas, Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 :78-89
[22]   THE SCATTERING RESONANCES FOR SCHRODINGER-TYPE OPERATORS WITH UNBOUNDED POTENTIALS [J].
Li, Peijun ;
Yao, Xiaohua ;
Zhao, Yue .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) :2149-2170
[23]   HEAT KERNEL BOUNDS FOR CERTAIN SCHRODINGER OPERATORS WITH UNBOUNDED POTENTIALS [J].
Metafune, Giorgio ;
Spina, Chiara .
HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04) :1243-1257
[24]   EIGENVALUE ASYMPTOTICS AND BOHR'S FORMULA FOR FRACTAL SCHRODINGER OPERATORS [J].
Ngai, Sze-Man ;
Tang, Wei .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 300 (01) :83-119
[25]   Eigenvalue bounds for Schrodinger operators with complex potentials. II [J].
Frank, Rupert L. ;
Simon, Barry .
JOURNAL OF SPECTRAL THEORY, 2017, 7 (03) :633-658
[26]   UNIVERSAL INEQUALITIES FOR THE EIGENVALUES OF LAPLACE AND SCHRODINGER OPERATORS ON SUBMANIFOLDS [J].
El Soufi, Ahmad ;
Harrell, Evans M., II ;
Ilias, Said .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) :2337-2350
[27]   Hardy spaces associated to the Schrodinger operator on strongly Lipschitz domains of Rd [J].
Huang, Jizheng .
MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (01) :141-168
[28]   Lp resolvent estimates for magnetic Schrodinger operators with unbounded background fields [J].
Cuenin, Jean-Claude ;
Kenig, Carlos E. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (02) :235-260
[29]   Spectral asymptotics for magnetic Schrodinger operators in domains with corners [J].
Kachmar, Ayman ;
Khochman, Abdallah .
JOURNAL OF SPECTRAL THEORY, 2013, 3 (04) :553-574
[30]   Generalization of Lax equivalence theorem on unbounded self-adjoint operators with applications to Schrodinger operators [J].
Luo, Yidong .
ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) :473-492