Combining local and global information for nonlinear dimensionality reduction

被引:13
作者
Wang, Qinggang [1 ]
Li, Jianwei [1 ]
机构
[1] Chongqing Univ, Minist Educ, Key Lab Optoelect Technol & Syst, Chongqing 400044, Peoples R China
关键词
Manifold learning; Dimensionality reduction; Variance analysis; Image manifolds; MANIFOLDS;
D O I
10.1016/j.neucom.2009.01.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinear dimensionality reduction is a challenging problem encountered in a variety of high dimensional data analysis, including machine learning, pattern recognition, scientific visualization, and neural computation. Based on the different geometric intuitions of manifolds, maximum variance unfolding (MVU) and Laplacian eigenmaps are designed for detecting the different aspects of dataset. In this paper, combining the ideas of MVU and Laplacian eigenmaps, we propose a new nonlinear dimensionality reduction method called distinguishing variance embedding (DVE). DVE unfolds the dataset by maximizing the global variance subject to the proximity relation preservation constraint originated in Laplacian eigemnaps. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on the actual images of rotating objects, faces, and handwritten digits. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2235 / 2241
页数:7
相关论文
共 50 条
  • [41] Nonlinear dimensionality reduction using a temporal coherence principle
    Huang, YaPing
    Zhao, JiaLi
    Liu, YunHui
    Luo, SiWei
    Zou, Qi
    Tian, Mei
    INFORMATION SCIENCES, 2011, 181 (16) : 3284 - 3307
  • [42] Text Dimensionality Reduction with Mutual Information Preserving Mapping
    Yang Zhen
    Yao Fei
    Fan Kefeng
    Huang Jian
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (05) : 919 - 925
  • [43] Text Dimensionality Reduction with Mutual Information Preserving Mapping
    YANG Zhen
    YAO Fei
    FAN Kefeng
    HUANG Jian
    Chinese Journal of Electronics, 2017, 26 (05) : 919 - 925
  • [44] On nonlinear dimensionality reduction for face recognition
    Huang, Weilin
    Yin, Hujun
    IMAGE AND VISION COMPUTING, 2012, 30 (4-5) : 355 - 366
  • [45] ANDRomeda: Adaptive nonlinear dimensionality reduction
    Marchette, DJ
    Priebe, CE
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 140 - 146
  • [46] Local and Global Preserving Semisupervised Dimensionality Reduction Based on Random Subspace for Cancer Classification
    Cai, Xianfa
    Wei, Jia
    Wen, Guihua
    Yu, Zhiwen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (02) : 500 - 507
  • [47] Spectral dimensionality reduction for Bregman information
    Kumagai A.
    Information Geometry, 2019, 2 (2) : 273 - 282
  • [48] Information-Geometric Dimensionality Reduction
    Carter, Kevin M.
    Raich, Raviv
    Finn, William G.
    Hero, Alfred O., III
    IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 89 - 99
  • [49] Nonlinear supervised dimensionality reduction via smooth regular embeddings
    Ornek, Cem
    Vural, Elif
    PATTERN RECOGNITION, 2019, 87 : 55 - 66
  • [50] Local Geometric Structure Feature for Dimensionality Reduction of Hyperspectral Imagery
    Luo, Fulin
    Huang, Hong
    Duan, Yule
    Liu, Jiamin
    Liao, Yinghua
    REMOTE SENSING, 2017, 9 (08)