Finite group actions on 3-manifolds and cyclic branched covers of knots

被引:2
作者
Boileau, Michel [1 ]
Franchi, Clara [2 ]
Mecchia, Mattia [3 ]
Paoluzzi, Luisa [1 ]
Zimmermann, Bruno [3 ]
机构
[1] Aix Marseille Univ, CNRS, UMR 7373, Cent Marseille,I2M, F-13453 Marseille, France
[2] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis Niccolo Tartaglia, Via Musei 41, I-25121 Brescia, Italy
[3] Univ Trieste, Dipartimento Matemat & Geosci, Via Valerio 12-1, I-34127 Trieste, Italy
关键词
HYPERBOLIC KNOTS; 3-SPHERES; SPACES; LINKS;
D O I
10.1112/topo.12052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As a consequence of a general result about finite group actions on 3-manifolds, we show that a hyperbolic 3-manifold can be the cyclic branched cover of at most fifteen inequivalent knots in S3 (in fact, a main motivation of the present paper is to establish the existence of such a universal bound). A similar, though weaker, result holds for arbitrary irreducible 3-manifolds: an irreducible 3-manifold can be a cyclic branched cover of odd prime order of at most six knots in S3. We note that in most other cases such a universal bound does not exist.
引用
收藏
页码:283 / 308
页数:26
相关论文
共 46 条
  • [1] [Anonymous], 1998, MATH SURVEYS MONOGRA, DOI DOI 10.1090/SURV/040.3
  • [2] [Anonymous], ASTERISQUE
  • [3] [Anonymous], 1986, CAMBRIDGE STUDIES AD
  • [4] Geometrization of 3-dimensional orbifolds
    Boileau, M
    Leeb, B
    Porti, J
    [J]. ANNALS OF MATHEMATICS, 2005, 162 (01) : 195 - 290
  • [5] HEEGAARD-SPLITTINGS AND HOMEOTOPY GROUPS OF SMALL SEIFERT MANIFOLDS
    BOILEAU, M
    OTAL, JP
    [J]. INVENTIONES MATHEMATICAE, 1991, 106 (01) : 85 - 107
  • [6] Boileau M., 2003, 3 DIMENSIONAL ORBIFO, V15
  • [7] Boileau M., 2008, GEOM TOPOL MONOGR, V14, P83
  • [8] On cyclic branched coverings of prime knots
    Boileau, Michel
    Paoluzzi, Luisa
    [J]. JOURNAL OF TOPOLOGY, 2008, 1 (03) : 557 - 583
  • [9] THE CHARACTERISTIC TORIC SPLITTING OF IRREDUCIBLE COMPACT 3-ORBIFOLDS
    BONAHON, F
    SIEBENMANN, LC
    [J]. MATHEMATISCHE ANNALEN, 1987, 278 (1-4) : 441 - 479
  • [10] Burde G., 2014, De Gruyter Studies in Mathematics, V5