Algebraic entropy fixes and convex limiting for continuous finite element discretizations of scalar hyperbolic conservation laws
被引:11
|
作者:
Kuzmin, Dmitri
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
Kuzmin, Dmitri
[1
]
de Luna, Manuel Quezada
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi ArabiaTU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
de Luna, Manuel Quezada
[2
]
机构:
[1] TU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi Arabia
In this work, we modify a continuous Galerkin discretization of a scalar hyperbolic conservation law using new algebraic correction procedures. Discrete entropy conditions are used to determine the minimal amount of entropy stabilization and constrain antidiffusive corrections of a property-preserving low-order scheme. The addition of a second-order entropy dissipative component to the antidiffusive part of a nearly entropy conservative numerical flux is generally insufficient to prevent violations of local bounds in shock regions. Our monolithic convex limiting technique adjusts a given target flux in a manner which guarantees preservation of invariant domains, validity of local maximum principles, and entropy stability. The new methodology combines the advantages of modern entropy stable/entropy conservative schemes and their local extremum diminishing counterparts. The process of algebraic flux correction is based on inequality constraints which provably provide the desired properties. No free parameters are involved. The proposed algebraic fixes are readily applicable to unstructured meshes, finite element methods, general time discretizations, and steady-state residuals. Numerical studies of explicit entropy-constrained schemes are performed for linear and nonlinear test problems. (C) 2020 Elsevier B.V. All rights reserved.
机构:
TU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
Kuzmin, Dmitri
de Luna, Manuel Quezada
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi ArabiaTU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
机构:
TU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS III, Vogelpothsweg 87, D-44227 Dortmund, Germany
机构:
TU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Kuzmin, Dmitri
de Luna, Manuel Quezada
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi ArabiaTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
机构:
TU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, GermanyTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany
Kuzmin, Dmitri
Quezada de Luna, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi ArabiaTU Dortmund Univ, Inst Appl Math LS 3, Vogelpothsweg 87, D-44227 Dortmund, Germany