ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION

被引:10
作者
Cui, Jianbo [1 ,2 ]
Hong, Jialin [1 ,2 ]
Sun, Liying [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 12期
基金
中国国家自然科学基金;
关键词
Stochastic nonlinear Schrodinger equation; multiplicative noise; global existence; blow-up; exponential integrability;
D O I
10.3934/dcdsb.2019169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the well-posedness of the weakly damped stochastic nonlinear Schrodinger(NLS) equation driven by multiplicative noise. First, we show the global existence of the unique solution for the damped stochastic NLS equation in critical case. Meanwhile, the exponential integrability of the solution is proved, which implies the continuous dependence on the initial data. Then, we analyze the effect of the damped term and noise on the blow-up phenomenon. By modifying the associated energy, momentum and variance identity, we deduce a sharp blow-up condition for damped stochastic NLS equation in supercritical case. Moreover, we show that when the damped effect is large enough, the damped effect can prevent the blow-up of the solution with high probability.
引用
收藏
页码:6837 / 6854
页数:18
相关论文
共 20 条
  • [1] Stochastic nonlinear Schrodinger equations: No blow-up in the non-conservative case
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7919 - 7940
  • [2] Stochastic nonlinear Schrodinger equations
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 : 168 - 194
  • [3] Bourgain J., 1999, AM MATH SOC C PUBLIC, V46, DOI DOI 10.1090/COLL/046
  • [4] Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen-Cahn equation
    Brehier, Charles-Edouard
    Cui, Jianbo
    Hong, Jialin
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 2096 - 2134
  • [5] On the Stochastic Strichartz Estimates and the Stochastic Nonlinear Schrodinger Equation on a Compact Riemannian Manifold
    Brzezniak, Z.
    Millet, A.
    [J]. POTENTIAL ANALYSIS, 2014, 41 (02) : 269 - 315
  • [6] Cazenave T., 2003, SEMILINEAR SCHRODING
  • [7] Cox S., ARXIV13095595
  • [8] Strong convergence rate of splitting schemes for stochastic nonlinear Schrodinger equations
    Cui, Jianbo
    Hong, Jialin
    Liu, Zhihui
    Zhou, Weien
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5625 - 5663
  • [9] ANALYSIS OF A SPLITTING SCHEME FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION WITH MULTIPLICATIVE NOISE
    Cui, Jianbo
    Hong, Jialin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2045 - 2069
  • [10] Strong convergence rate of finite difference approximations for stochastic cubic Schrodinger equations
    Cui, Jianbo
    Hong, Jialin
    Liu, Zhihui
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3687 - 3713