Aligned nanofiber material supports cell growth and increases osteogenesis in canine adipose-derived mesenchymal stem cells in vitro

被引:21
|
作者
Pandey, Sony [1 ]
Rathore, Kusum [1 ,3 ]
Johnson, Jed [2 ]
Cekanova, Maria [1 ]
机构
[1] Univ Tennessee, Coll Vet Med, Dept Small Anim Clin Sci, Knoxville, TN 37996 USA
[2] Nanofiber Solut Inc, Hilliard, OH 43026 USA
[3] Univ Tennessee Res Fdn, Knoxville, TN 37996 USA
关键词
random-orientated PCL nanofibers; aligned-orientated PCL nanofibers; mesenchymal stem cells; 3-D cell culture; canine; ELECTROSPUN NANOFIBERS; DIFFERENTIATION; ALIGNMENT; SCAFFOLDS; MATRIX;
D O I
10.1002/jbm.a.36381
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering shows great promise for the treatment of degenerative diseases, including bone repair. Polymer nanofibers provide a three-dimensional (3-D) scaffold for attachment and growth of mesenchymal stem cells. Increasing evidence supports that fiber alignment on scaffolds plays a major role in the viability and differentiation of stem cells. We compared the cell viability of canine adipose tissue-derived mesenchymal stem cells (cADMSCs) cultured in the aligned- (NanoAligned) and random- (NanoECM) oriented polycaprolactone (PCL) nanofiber-coated plates to control polystyrene tissue culture plates using a proliferation assay. Ability of the plates to induce differentiation of cADMSCs into osteocytes, adipocytes, and neurons was evaluated based on expression of the osteocyte markers, COL1A1 and osterix; adipocyte markers PPAR2 and LPL; and neuronal marker nestin using RT-PCR. Proliferation results demonstrated that aligned-oriented PCL nanofiber-coated plates were more suitable substrate for cADMSCs after 7 days in culture compared to random-oriented PCL nanofiber-coated or control plates. Additionally, we demonstrated that both 3-D PCL nanofiber-coated plates were a better scaffold for cADMSCs differentiation into osteocytes compared to control plates. In conclusion, our results confirm that PCL nanofiber is a suitable tissue engineering material for use in regenerative medicine for canine patients in vivo. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1780-1788, 2018.
引用
收藏
页码:1780 / 1788
页数:9
相关论文
共 50 条
  • [41] Butea monosperma bark extract: a natural boost for osteogenesis via Wnt/β-catenin pathway activation in adipose-derived mesenchymal stem cells
    Sundar, Rebu
    Sundar, Gayathri
    John, Annie
    Abraham, Annie
    BIOTECHNOLOGY LETTERS, 2025, 47 (01)
  • [42] Adipose-derived mesenchymal stem cells release microvesicles with procoagulant activity
    Fiedler, Tomas
    Rabe, Magdalena
    Mundkowski, Ralf G.
    Oehmcke-Hecht, Sonja
    Peters, Kirsten
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2018, 100 : 49 - 53
  • [43] Biological effects of melatonin on human adipose-derived mesenchymal stem cells
    Heo, June Seok
    Pyo, Sangshin
    Lim, Ja-Yun
    Yoon, Dae Wui
    Kim, Bo Yong
    Kim, Jin-Hee
    Kim, Gi Jin
    Lee, Seung Gwan
    Kim, Jinkwan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 44 (06) : 2234 - 2244
  • [44] Small extracellular vesicles derived from sequential stimulation of canine adipose-derived mesenchymal stem cells enhance anti-inflammatory activity
    Oontawee, Saranyou
    Siriarchavatana, Parkpoom
    Rodprasert, Watchareewan
    Padeta, Irma
    Pamulang, Yudith Violetta
    Somparn, Poorichaya
    Pisitkun, Trairak
    Nambooppha, Boondarika
    Sthitmatee, Nattawooti
    Na Nan, Daneeya
    Osathanon, Thanaphum
    Egusa, Hiroshi
    Sawangmake, Chenphop
    BMC VETERINARY RESEARCH, 2025, 21 (01)
  • [45] Immortalized Canine Adipose-Derived Mesenchymal Stem Cells Maintain the Immunomodulatory Capacity of the Original Primary Cells
    Yasumura, Yuyo
    Teshima, Takahiro
    Nagashima, Tomokazu
    Michishita, Masaki
    Takano, Takashi
    Taira, Yoshiaki
    Suzuki, Ryohei
    Matsumoto, Hirotaka
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (24)
  • [46] In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells
    Guan Lidong
    Li Shaoqing
    Wang Yunfang
    Yue Huimin
    Liu Daqing
    He Lijuan
    Bai Cixian
    Yan Fang
    Nan Xue
    Shi Shuangshuang
    Pei Xuetao
    CHINESE SCIENCE BULLETIN, 2006, 51 (15): : 1863 - 1868
  • [47] Transplantation of human adipose-derived mesenchymal stem cells on a bladder acellular matrix for bladder regeneration in a canine model
    Hou, Xianglin
    Shi, Chunying
    Chen, Wei
    Chen, Bing
    Jia, Weisheng
    Guo, Yu
    Ma, Chao
    Ye, Gang
    Kang, Jiuhong
    Dai, Jianwu
    BIOMEDICAL MATERIALS, 2016, 11 (03)
  • [48] Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels
    Lewis, Mackenzie
    David, Gabriel
    Jacobs, Danielle
    Kuczwara, Patrick
    Woessner, Alan E.
    Kim, Jin-Woo
    Quinn, Kyle P.
    Song, Younghye
    MATERIALS TODAY BIO, 2023, 22
  • [49] Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro
    Wu, Jian-Huang
    Li, Miao
    Liang, Yan
    Lu, Tao
    Duan, Chun-Yue
    CHINESE MEDICAL JOURNAL, 2016, 129 (13) : 1592 - 1599
  • [50] In vitro osteogenesis of human adipose-derived stem cells by coculture with human umbilical vein endothelial cells
    Wang, Jian
    Ye, Yaping
    Tian, Hongtao
    Yang, Shuhua
    Jin, Xin
    Tong, Wei
    Zhang, Yukun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 412 (01) : 143 - 149