Two-cylinder entanglement entropy under a twist

被引:24
作者
Chen, Xiao [1 ,2 ,3 ]
Witczak-Krempa, William [4 ,5 ]
Faulkner, Thomas [2 ,3 ]
Fradkin, Eduardo [2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA
[4] Univ Montreal, Dept Phys, CP 6128, Montreal, PQ H3C 3J7, Canada
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2017年
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
entanglement entropies; entanglement in extended quantum systems; conformal field theory; FIELD-THEORY;
D O I
10.1088/1742-5468/aa668a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the von Neumann and Renyi entanglement entropy (EE) of the scale-invariant theories defined on the tori in 2 + 1 and 3 + 1 spacetime dimensions. We focus on the spatial bi-partitions of the torus into two cylinders, and allow for twisted boundary conditions along the non-contractible cycles. Various analytical and numerical results are obtained for the universal EE of the relativistic boson and Dirac fermion conformal field theories (CFTs), the fermionic quadratic band touching and the boson with z = 2 Lifshitz scaling. The shape dependence of the EE clearly distinguishes these theories, although intriguing similarities are found in certain limits. We also study the evolution of the EE when a mass is introduced to detune the system from its scale-invariant point, by employing a renormalized EE that goes beyond a naive subtraction of the area law. In certain cases we find the non-monotonic behavior of the torus EE under RG flow, which distinguishes it from the EE of a disk.
引用
收藏
页数:40
相关论文
共 77 条
[1]   Disk entanglement entropy for a Maxwell field [J].
Agon, Cesar A. ;
Headrick, Matthew ;
Jafferis, Daniel L. ;
Kasko, Skyler .
PHYSICAL REVIEW D, 2014, 89 (02)
[2]  
[Anonymous], 2011, ARXIV11125166
[3]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[4]   Entanglement entropy as a witness of the Aharonov-Bohm effect in QFT [J].
Arias, Raul E. ;
Blanco, David D. ;
Casini, Horacio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (14)
[5]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[6]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[7]   Holographic torus entanglement and its renormalization group flow [J].
Bueno, Pablo ;
Witczak-Krempa, William .
PHYSICAL REVIEW D, 2017, 95 (06)
[8]   Universal corner entanglement from twist operators [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09)
[9]   Corner contributions to holographic entanglement entropy [J].
Bueno, Pablo ;
Myers, Robert C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08) :1-54
[10]   Universality of Corner Entanglement in Conformal Field Theories [J].
Bueno, Pablo ;
Myers, Robert C. ;
Witczak-Krempa, William .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)