Composition Dependence on the Evolution of Nanoeutectic in CoCrFeNiNbx (0.45 ≤ x ≤ 0.65) High Entropy Alloys

被引:73
作者
Chanda, Barnasree [1 ]
Das, Jayanta [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
关键词
Eutectic; High entropy alloys; Mechanical properties; Phase stability; Thermodynamic properties; MECHANICAL-PROPERTIES; PHASE-FORMATION; WEAR-RESISTANCE; SOLID-SOLUTION; MICROSTRUCTURE; STRENGTH; ELEMENTS;
D O I
10.1002/adem.201700908
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of Nb addition in arc-melted CoCrFeNiNbx (0.45 <= x <= 0.65) high entropy alloys (HEAs) on the phase evolution, stability, refinement of the microstructure, and mechanical properties are investigated. Minor fluctuation of Nb modifies the microstructure from hypoeutectic (x = 0.45) to eutectic (x = 0.5) and hypereutectic (x = 0.55) containing 134-200nm thin nanolamellar FCC gamma-Ni and HCP Fe2Nb-type Laves phases. The nano-eutectic CoCrFeNiNb0.5 HEA shows high yield strength (2060 +/- 5 MPa) and strain hardening up to 2200 +/- 10 MPa with 17.0 +/- 0.5% compressive plasticity. Transmission electron microscopic studies of partially deformed specimen has been revealed that the activity of dislocations is present in the eutectic FCC/Laves lamellae and at their interface. The stability of the phases in CoCrFeNiNbx and other eutectic HEAs as reported in the literature, has been assessed by estimating mixing entropy (Delta S-mix), mixing enthalpy (Delta H-mix), atomic size differences (delta), valence electron concentration, Pauling electronegativity (Delta chi(P)), and Allen electronegativity (Delta chi(A)) to predict the evolution and coexistence of eutectic phases.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[2]  
Cantor B, 2014, HIGH-ENTROPY ALLOYS, P1
[3]   Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy [J].
Chen, Min-Rui ;
Lin, Su-Jien ;
Yeh, Jien-We | ;
Chen, Swe-Kai ;
Huang, Yuan-Sheng ;
Chuang, Ming-Hao .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (05) :1363-1369
[4]   Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys [J].
Chen, X. ;
Qi, J. Q. ;
Sui, Y. W. ;
He, Y. Z. ;
Wei, F. X. ;
Meng, Q. K. ;
Sun, Z. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 681 :25-31
[5]   Electrochemical kinetics of the high entropy alloys in aqueous environments - a comparison with type 304 stainless steel [J].
Chen, YY ;
Hong, UT ;
Shih, HC ;
Yeh, JW ;
Duval, T .
CORROSION SCIENCE, 2005, 47 (11) :2679-2699
[6]  
Glicksman ME, 2011, PRINCIPLES OF SOLIDIFICATION: AN INTRODUCTION TO MODERN CASTING AND CRYSTAL GROWTH CONCEPTS, P1, DOI 10.1007/978-1-4419-7344-3
[7]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[8]   Designing eutectic high entropy alloys of CoCrFeNiNbX [J].
He, Feng ;
Wang, Zhijun ;
Cheng, Peng ;
Wang, Qiang ;
Li, Junjie ;
Dang, Yingying ;
Wang, Jincheng ;
Liu, C. T. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 :284-289
[9]   Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition [J].
Hsu, CY ;
Yeh, JW ;
Chen, SK ;
Shun, TT .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (05) :1465-1469
[10]   Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys [J].
Jiang, Hui ;
Jiang, Li ;
Qiao, Dongxu ;
Lu, Yiping ;
Wang, Tongmin ;
Cao, Zhiqiang ;
Li, Tingju .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2017, 33 (07) :712-717