Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating

被引:20
作者
Tabriz, Atabak Ghanizadeh [1 ]
Mills, Christopher G. [2 ,3 ]
Mullins, John J. [3 ]
Davies, Jamie A. [2 ,4 ]
Shu, Wenmiao [1 ,5 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Integrat Physiol, Edinburgh, Midlothian, Scotland
[3] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[4] Univ Edinburgh, Ctr Synthet Biol, Edinburgh, Midlothian, Scotland
[5] Univ Strathclyde, Dept Biomed Engn, Glasgow, Lanark, Scotland
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2017年 / 5卷
基金
“创新英国”项目; 英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 英国国家替代、减少和改良动物研究中心;
关键词
Alginate; Biofabrication; Cell-laden; Hydrogel; Micro dip-coating; Vascular structures;
D O I
10.3389/fbioe.2017.00013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 pm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Development of cell-laden α-TCP/GeLMA 3D construct for hard tissue regeneration
    Kim, Jueun
    Park, Honghyun
    Yun, Hui-suk
    TISSUE ENGINEERING PART A, 2022, 28 : 779 - 779
  • [32] 3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression
    Li, Xinda
    Wang, Xiong
    Wang, Xuanzhi
    Chen, Hongqing
    Zhang, Xinzhi
    Zhou, Lian
    Xu, Tao
    3 BIOTECH, 2018, 8 (08)
  • [33] Evaluating cells metabolic activity of bioinks for bioprinting: the role of cell-laden hydrogels and 3D printing on cell survival
    Mazzoldi, Elena Laura
    Gaudenzi, Giulia
    Ginestra, Paola Serena
    Ceretti, Elisabetta
    Giliani, Silvia Clara
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [34] Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers
    Yajima, Yuya
    Lee, Chu Ning
    Yamada, Masumi
    Utoh, Rie
    Seki, Minoru
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2018, 126 (01) : 111 - 118
  • [35] Magnetically responsive micro-clustered calcium phosphate-reinforced cell-laden microbead sodium alginate hydrogel for accelerated osteogenic tissue regeneration
    Hia, Esensil Man
    Suh, Il Won
    Jang, Se Rim
    Park, Chan Hee
    CARBOHYDRATE POLYMERS, 2024, 346
  • [36] Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs
    Liang, Hongtao
    He, Jiankang
    Chang, Jinke
    Zhang, Bing
    Li, Dichen
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (01)
  • [37] Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth
    Lee, Bae Hoon
    Tin, Stella Poh Hui
    Chaw, Su Yin
    Cao, Ye
    Xia, Yun
    Steele, Terry W. J.
    Seliktar, Dror
    Bianco-Peled, Havazelet
    Venkatraman, Subbu S.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2014, 25 (04) : 394 - 409
  • [38] The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability
    Billiet, Thomas
    Gevaert, Elien
    De Schryver, Thomas
    Cornelissen, Maria
    Dubruel, Peter
    BIOMATERIALS, 2014, 35 (01) : 49 - 62
  • [39] Engineering 3D functional tissue constructs using self-assembling cell-laden microniches
    Xing, Dan
    Liu, Wei
    Li, Jiao Jiao
    Liu, Longwei
    Guo, Anqi
    Wang, Bin
    Yu, Hongsheng
    Zhao, Yu
    Chen, Yuling
    You, Zhifeng
    Lyu, Cheng
    Li, Wenjing
    Liu, Aifeng
    Du, Yanan
    Lin, Jianhao
    ACTA BIOMATERIALIA, 2020, 114 : 170 - 182
  • [40] Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks
    Figueiredo, Lara
    Le Visage, Catherine
    Weiss, Pierre
    Yang, Jing
    POLYMERS, 2020, 12 (06)