The logarithmic Sobolev inequality for the Wasserstein diffusion

被引:12
作者
Doering, Maik [1 ]
Stannat, Wilhelm [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
SEMIGROUPS;
D O I
10.1007/s00440-008-0166-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that the Dirichlet form associated with the Wasserstein diffusion on the set of all probability measures on the unit interval, introduced in von Renesse and Sturm (Entropic measure and Wasserstein diffusion. Ann Probab, 2008) satisfies a logarithmic Sobolev inequality. This implies hypercontractivity of the associated transition semigroup. We also study functional inequalities for related diffusion processes.
引用
收藏
页码:189 / 209
页数:21
相关论文
共 8 条
[1]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[2]   FLEMING-VIOT PROCESSES IN POPULATION-GENETICS [J].
ETHIER, SN ;
KURTZ, TG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :345-386
[3]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[4]   Functional inequalities for uniformly integrable semigroups and application to essential spectrums [J].
Gong, FZ ;
Wang, FY .
FORUM MATHEMATICUM, 2002, 14 (02) :293-313
[5]  
GROSS L, 1992, LECT NOTES MATH, V1563
[6]   On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators [J].
Stannat, W .
ANNALS OF PROBABILITY, 2000, 28 (02) :667-684
[7]   Long-time behaviour and regularity properties of transition semigroups of Fleming-Vioti processes [J].
Stannat, W .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (03) :431-469
[8]  
VONRENESSE MK, 2007, ANN PROBAB IN PRESS