A Riemann jump problem for biharmonic functions in fractal domains

被引:1
作者
Abreu Blaya, Ricardo [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
关键词
Biharmonic functions; Fractals; Lipschitz classes; Riemann problem; DIRICHLET PROBLEM;
D O I
10.1007/s13324-020-00469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Biharmonic functions are the solutions of the fourth order partial differential equation Delta Delta omega = 0. The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Omega subset of R-2 with fractal boundary.
引用
收藏
页数:13
相关论文
共 20 条
[11]  
Burgeth BF, 2003, PAMM P APPL MATH MEC, V2, P408
[12]  
Gakhov F. D., 1988, BOUNDARY VALUE PROBL
[13]   THE GAUSS-GREEN THEOREM FOR FRACTAL BOUNDARIES [J].
HARRISON, J ;
NORTON, A .
DUKE MATHEMATICAL JOURNAL, 1992, 67 (03) :575-588
[14]  
Karim MNA, 2010, PROG ELECTROMAGN RES, V100, P201
[15]  
[Мазалов Максим Яковлевич Mazalov Maksim Yakovlevich], 2009, [Математический сборник, Sbornik: Mathematics, Matematicheskii sbornik], V200, P59, DOI 10.4213/sm7533
[16]  
Muskhelisvili NI., 1953, SINGULAR INTEGRAL EQ
[17]  
Stein E. M., 1970, PRINCETON MATH SER, V30
[18]   Miniaturization of a Koch-Type Fractal Antenna for Wi-Fi Applications [J].
Tumakov, Dmitrii ;
Chikrin, Dmitry ;
Kokunin, Petr .
FRACTAL AND FRACTIONAL, 2020, 4 (02) :1-12
[19]  
Vekua I.N, 1962, GEN ANAL FUNCTIONS
[20]  
Whitney H, 1934, T AM MATH SOC, V36, P63, DOI 10.2307/1989708