A Riemann jump problem for biharmonic functions in fractal domains

被引:1
作者
Abreu Blaya, Ricardo [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
关键词
Biharmonic functions; Fractals; Lipschitz classes; Riemann problem; DIRICHLET PROBLEM;
D O I
10.1007/s13324-020-00469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Biharmonic functions are the solutions of the fourth order partial differential equation Delta Delta omega = 0. The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Omega subset of R-2 with fractal boundary.
引用
收藏
页数:13
相关论文
共 20 条
[1]  
Balk BM., 1991, On Polyanalytic Functions
[2]   Integral representations in complex, hypercomplex and Clifford analysis [J].
Begehr, H .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (03) :223-241
[3]  
Begehr H, 2008, MATEMATICHE, V63, P139
[4]   A hierarchy of integral operators [J].
Begehr, H ;
Hile, GN .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) :669-706
[5]  
Begehr H., 2005, B ASOCIACION MATEMAT, VXII
[6]  
Begehr H, 2007, PARTICULAR POLYHARMO, P84
[7]   A Dirichlet problem for polyharmonic functions [J].
Begehr, Heinrich ;
Du, Jinyuan ;
Wang, Yufeng .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :435-457
[8]   Self-Similarity of Plasmon Edge Modes on Koch Fractal Antennas [J].
Bellido, Edson P. ;
Bernasconi, Gabriel D. ;
Rossouw, David ;
Butet, Jeremy ;
Martin, Olivier J. F. ;
Botton, Gianluigi A. .
ACS NANO, 2017, 11 (11) :11240-11249
[9]  
Blaya, 2012, COMMUNICATIONS MATH, V12, P26
[10]  
Brackx F., 1982, CLIFFORD ANAL, V75