A Riemann jump problem for biharmonic functions in fractal domains

被引:1
|
作者
Abreu Blaya, Ricardo [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Chilpancingo, Mexico
关键词
Biharmonic functions; Fractals; Lipschitz classes; Riemann problem; DIRICHLET PROBLEM;
D O I
10.1007/s13324-020-00469-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Biharmonic functions are the solutions of the fourth order partial differential equation Delta Delta omega = 0. The purpose of this paper is to solve a kind of Riemann boundary value problem for biharmonic functions assuming higher order Lipschitz boundary data. We approach this problem making use of generalized Teodorescu transforms for obtaining the explicit expression of its solution in a Jordan domain Omega subset of R-2 with fractal boundary.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Riemann jump problem for biharmonic functions in fractal domains
    Ricardo Abreu Blaya
    Analysis and Mathematical Physics, 2021, 11
  • [2] A jump problem for β-analytic functions in domains with fractal boundaries
    Ricardo Abreu-Blaya
    Juan Bory-Reyes
    Jean-Marie Vilaire
    Revista Matemática Complutense, 2010, 23 : 105 - 111
  • [3] A jump problem for β-analytic functions in domains with fractal boundaries
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    Vilaire, Jean-Marie
    REVISTA MATEMATICA COMPLUTENSE, 2010, 23 (01): : 105 - 111
  • [4] On estimates of biharmonic functions on Lipschitz and convex domains
    Zhongwei Shen
    The Journal of Geometric Analysis, 2006, 16 : 721 - 734
  • [5] On estimates of biharmonic functions on Lipschitz and convex domains
    Shen, Zhongwei
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (04) : 721 - 734
  • [6] On the Riemann problem in fractal elastic media
    Gutierrez Valencia, Diego Esteban
    Abreu Blaya, Ricardo
    Arciga Alejandre, Martin Patricio
    Pena Perez, Yudier
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (01)
  • [7] On the Riemann problem in fractal elastic media
    Diego Esteban Gutierrez Valencia
    Ricardo Abreu Blaya
    Martín Patricio Árciga Alejandre
    Yudier Peña Pérez
    Analysis and Mathematical Physics, 2023, 13
  • [8] Riemann problem for bianalytic functions on h-summable curves
    Abreu Blaya, Ricardo
    Cruz De la Cruz, Martha Paola
    Sanchez Santiesteban, Jose Luis
    Sigarreta Almira, Jose Maria
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) : 2995 - 3008
  • [9] A Cauchy Transform for Polymonogenic Functions on Fractal Domains
    Gomez Santiesteban, Tania Rosa
    Abreu Blaya, Ricardo
    Hernandez Gomez, Juan C.
    Sigarreta Almira, Jose Maria
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (03)
  • [10] A Cauchy Transform for Polymonogenic Functions on Fractal Domains
    Tania Rosa Gómez Santiesteban
    Ricardo Abreu Blaya
    Juan C. Hernández Gómez
    José María Sigarreta Almira
    Complex Analysis and Operator Theory, 2022, 16