Field-Dependent Heat Dissipation of Carbon Nanotube Electric Currents

被引:2
作者
Voskanian, Norvik [1 ,2 ]
Olsson, Eva [1 ]
Cumings, John [2 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20740 USA
关键词
THERMAL-PROPERTIES; TRANSPORT; GRAPHENE; CONDUCTION; SCATTERING;
D O I
10.1038/s41598-019-46944-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study heat dissipation of a multi-wall carbon nanotube (MWCNT) device fabricated from two crossed nanotubes on a SiNx substrate under the influence of a constant (DC) electric bias. By monitoring the temperature of the substrate, we observe negligible Joule heating within the nanotube lattice itself and instead heating occurs in the insulating substrate directly via a remote-scattering heating effect. Using finite element analysis, we estimate a remote heating parameter, beta, as the ratio of the power dissipated directly in the substrate to the total power applied. The extracted parameters show two distinct bias ranges; a low bias regime where about 85% of the power is dissipated directly into the substrate and a high bias regime where beta decreases, indicating the onset of traditional Joule heating within the nanotube. Analysis shows that this reduction is consistent with enhanced scattering of charge carriers by optical phonons within the nanotube. The results provide insights into heat dissipation mechanisms of Joule heated nanotube devices that are more complex than a simple heat dissipation mechanism dominated by acoustic phonons, which opens new possibilities for engineering nanoelectronics with improved thermal management.
引用
收藏
页数:7
相关论文
共 44 条
  • [1] Deformable transparent all-carbon-nanotube transistors
    Aikawa, Shinya
    Einarsson, Erik
    Thurakitseree, Theerapol
    Chiashi, Shohei
    Nishikawa, Eiichi
    Maruyama, Shigeo
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (06)
  • [2] Carbon nanotube electronics
    Avouris, P
    [J]. CHEMICAL PHYSICS, 2002, 281 (2-3) : 429 - 445
  • [3] Carbon-based electronics
    Avouris, Phaedon
    Chen, Zhihong
    Perebeinos, Vasili
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (10) : 605 - 615
  • [4] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [5] Baloch KH, 2012, NAT NANOTECHNOL, V7, P315, DOI [10.1038/NNANO.2012.39, 10.1038/nnano.2012.39]
  • [6] Controlling the thermal contact resistance of a carbon nanotube heat spreader
    Baloch, Kamal H.
    Voskanian, Norvik
    Cumings, John
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (06)
  • [7] Bourlon B., 2004, PHYS REV LETT, V93
  • [8] Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs
    Brady, Gerald J.
    Way, Austin J.
    Safron, Nathaniel S.
    Evensen, Harold T.
    Gopalan, Padma
    Arnold, Michael S.
    [J]. SCIENCE ADVANCES, 2016, 2 (09):
  • [9] Electron thermal microscopy
    Brintlinger, Todd
    Qi, Yi
    Baloch, Kamal H.
    Goldhaber-Gordon, David
    Cumings, John
    [J]. NANO LETTERS, 2008, 8 (02) : 582 - 585
  • [10] Nanoscale thermal transport. II. 2003-2012
    Cahill, David G.
    Braun, Paul V.
    Chen, Gang
    Clarke, David R.
    Fan, Shanhui
    Goodson, Kenneth E.
    Keblinski, Pawel
    King, William P.
    Mahan, Gerald D.
    Majumdar, Arun
    Maris, Humphrey J.
    Phillpot, Simon R.
    Pop, Eric
    Shi, Li
    [J]. APPLIED PHYSICS REVIEWS, 2014, 1 (01):