An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation

被引:18
作者
Ali, Umair [1 ,2 ]
Sohail, Muhammad [3 ]
Abdullah, Farah Aini [2 ]
机构
[1] AL Fajar Univ, Dept Math, Mari Indus 42350, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, Usm Penang 11800, Malaysia
[3] Inst Space Technol, Dept Appl Math & Stat, Islamabad 44000, Pakistan
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 09期
关键词
variable-order fractional sub-diffusion equation; implicit difference method; stability; consistency; convergence; DIFFERENCE SCHEME; SPATIAL ACCURACY;
D O I
10.3390/sym12091437
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The variable-order (VO) fractional calculus can be seen as a natural extension of the constant-order, which can be utilized in physical and biological applications. In this study, we derive a new numerical approximation for the VO fractional Riemann-Liouville integral formula and developed an implicit difference scheme (IDS) for the variable-order fractional sub-diffusion equation (VO-FSDE). The derived approximation used in the VO time fractional derivative with the central difference approximation for the space derivative. Investigated the unconditional stability by the van Neumann method, consistency, and convergence analysis of the proposed scheme. Finally, a numerical example is presented to verify the theoretical analysis and effectiveness of the proposed scheme.
引用
收藏
页数:12
相关论文
共 41 条
[1]  
Ali U., 2017, INTERPOLAT APPROX SC, V2017, P18, DOI DOI 10.5899/2017/jiasc-00117
[2]   Fourth-Order Difference Approximation for Time-Fractional Modified Sub-Diffusion Equation [J].
Ali, Umair ;
Sohail, Muhammad ;
Usman, Muhammad ;
Abdullah, Farah Aini ;
Khan, Ilyas ;
Nisar, Kottakkaran Sooppy .
SYMMETRY-BASEL, 2020, 12 (05)
[3]   Modified Implicit Difference Method for One-Dimensional Fractional Wave Equation [J].
Ali, Umair ;
Abdullah, Farah Aini .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
[4]   Modified implicit fractional difference scheme for 2D modified anomalous fractional sub-diffusion equation [J].
Ali, Umair ;
Abdullah, Farah Aini ;
Mohyud-Din, Syed Tauseef .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[5]   Hybrid Optimal Control under Mode Switching Constraints with Applications to Pesticide Scheduling [J].
Ali, Usman ;
Egerstedt, Magnus .
ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2018, 2 (01)
[6]  
[Anonymous], 1995, Anal. Math.
[7]   Numerical algorithm for the variable-order Caputo fractional functional differential equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2016, 85 (03) :1815-1823
[8]   Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation [J].
Bhrawy, A. H. ;
Zaky, M. A. .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :101-116
[9]   A compact finite difference scheme for variable order subdiffusion equation [J].
Cao, Jianxiong ;
Qiu, Yanan ;
Song, Guojie .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :140-149
[10]   Numerical methods for solving a two-dimensional variable-order modified diffusion equation [J].
Chen, Chang-Ming .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :62-78