共 59 条
HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells
被引:34
作者:
Mace, Kimberly A.
[1
,2
]
Restivo, Terry E.
[2
]
Rinn, John L.
[3
]
Paquet, Agnes C.
[4
]
Chang, Howard Y.
[3
]
Young, David M.
[2
]
Boudreau, Nancy J.
[2
]
机构:
[1] Univ Manchester, Fac Life Sci, Healing Fdn Ctr, Manchester M13 9PT, Lancs, England
[2] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA
[3] Stanford Univ, Sch Med, Program Epithelial Biol, Stanford, CA 94305 USA
[4] Univ Calif San Francisco, Dept Med, San Francisco, CA USA
来源:
关键词:
Wound repair;
HOXA3;
Bone marrow-derived cells;
Endothelial progenitor cells;
Inflammation;
Angiogenesis;
Vasculogenesis;
GFP chimeras;
ENDOTHELIAL PROGENITOR CELLS;
GENETICALLY DIABETIC MOUSE;
RECEPTOR-RELATED PROTEIN-1;
MESENCHYMAL STEM-CELLS;
NF-KAPPA-B;
ADVANCED GLYCATION;
EXTRACELLULAR-MATRIX;
INFLAMMATORY CELLS;
GENE-TRANSFER;
WOUND REPAIR;
D O I:
10.1002/stem.90
中图分类号:
Q813 [细胞工程];
学科分类号:
摘要:
The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor kappa B pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds. STEM CELLS 2009; 27: 1654-1665
引用
收藏
页码:1654 / 1665
页数:12
相关论文