A conservative exponential time differencing method for the nonlinear cubic Schrodinger equation

被引:5
作者
Bratsos, A. G. [1 ]
Khaliq, A. Q. M. [2 ,3 ]
机构
[1] Technol Educ Inst TEI Athens, Dept Naval Architecture, Athens, Greece
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37130 USA
[3] Middle Tennessee State Univ, Ctr Computat Sci, Murfreesboro, TN 37130 USA
关键词
Exponential time differencing; method of lines; modified predictor-corrector; cubic Schrodinger equation; 35K55; 35Q41; 65M06; 65M20; SPLINE FINITE-ELEMENT; STABILITY; 2ND-ORDER; SCHEMES;
D O I
10.1080/00207160.2015.1101458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mass and energy conservative exponential time differencing scheme using the method of lines is proposed for the numerical solution of a certain family of first-order time-dependent PDEs. The resulting nonlinear system is solved with an unconditionally stable modified predictor-corrector method using a second-order explicit scheme. The efficiency of the method introduced is analyzed and discussed by applying it to the nonlinear cubic Schrodinger equation. The results arising from the experiments for the single, the double soliton waves and the system of two Schrodinger equations are compared with relevant known ones.
引用
收藏
页码:230 / 251
页数:22
相关论文
共 42 条
[1]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[2]   AN ENGINEERS GUIDE TO SOLITON PHENOMENA - APPLICATION OF THE FINITE-ELEMENT METHOD [J].
ARGYRIS, J ;
HAASE, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :71-122
[3]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[4]   AN IMPROVED SECOND-ORDER NUMERICAL METHOD FOR THE GENERALIZED BURGERS-FISHER EQUATION [J].
Bratsos, A. G. .
ANZIAM JOURNAL, 2013, 54 (03) :181-199
[5]   A Modified Numerical Scheme for the Cubic Schrodinger Equation [J].
Bratsos, A. G. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) :608-620
[6]  
Bratsos A.G., 2001, Korean J. Comput. Appl. Math, V8, P459
[7]  
Bratsos A.G., 2005, Int. J. Pure Appl. Math. Sci, V2, P217
[8]   A discrete Adomian decomposition method for discrete nonlinear Schrodinger equations [J].
Bratsos, Athanassios ;
Ehrhardt, Matthias ;
Famelis, Ioannis Th. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :190-205
[9]  
Chen J.-B., 2001, Electron. Trans. Numer. Anal, V12, P193
[10]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455