Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode

被引:231
作者
Li, Huang [1 ]
Duan, Qiangling [1 ]
Zhao, Chunpeng [1 ]
Huang, Zonghou [1 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Thermal runaway hazards; State of charge; Thermal runaway propagation; LITHIUM-ION BATTERY; ELECTRIC VEHICLES; LI(NI0.6CO0.2MN0.2)O-2 CATHODE; ABUSE BEHAVIOR; POUCH CELLS; OVERCHARGE; CALORIMETRY; DEGRADATION; MECHANISMS; STABILITY;
D O I
10.1016/j.jhazmat.2019.03.116
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Thermal runaway (TR) and its propagation behavior in the large format lithium-ion battery (LIB) with various states of charge (SOC) are experimentally investigated in this work. Thermal runaway feature of the cell under thermal abuse condition is characterized using extended volume accelerating rate calorimeter. Based on the experimental results, the modules with five LIBs are built to analyze TR propagation mechanism and further discuss the impact of SOC on TR propagation behavior. It is found that the TR is firstly triggered on the layer near the front surface of the LIB, and then spread to the whole battery. The average propagation time inside the single LIB is 10 s in the module with 100% SOC while 39 s in the module with 50% SOC. Moreover, the module with 100% SOC shows intense combustion behavior, which is replaced by a considerable amount of smoke in the module with 50% SOC. Besides, the average propagation time between adjacent LIBs is significantly delayed from 87 s in 100% SOC module to 307 s in 50% SOC module. This work details lit propagation feature in large format LIB pack, and can provide the guidelines for the safety design of lithium-ion battery module.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 34 条
[1]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[2]  
Bergman TL, 2011, Introduction to heat transfer.
[3]   Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge [J].
Chen, Wei-Chun ;
Wang, Yih-Wen ;
Shu, Chi-Min .
JOURNAL OF POWER SOURCES, 2016, 318 :200-209
[4]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[5]   A 3D thermal runaway propagation model for a large format lithium ion battery module [J].
Feng, Xuning ;
Lu, Languang ;
Ouyang, Minggao ;
Li, Jiangqiu ;
He, Xiangming .
ENERGY, 2016, 115 :194-208
[6]   Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery [J].
Feng, Xuning ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wu, Peng ;
Kulp, Christian ;
Prasser, Stefan .
APPLIED ENERGY, 2015, 154 :74-91
[7]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273
[8]   Characterization of large format lithium ion battery exposed to extremely high temperature [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
He, Xiangming ;
Lu, Languang ;
Han, Xuebing ;
Fang, Mou ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2014, 272 :457-467
[9]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[10]   An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter [J].
Fu, Yangyang ;
Lu, Song ;
Li, Kaiyuan ;
Liu, Changchen ;
Cheng, Xudong ;
Zhang, Heping .
JOURNAL OF POWER SOURCES, 2015, 273 :216-222