Stability of an Euler-Lagrange type Cubic Functional Equation

被引:5
|
作者
Najati, A. [1 ]
Moradlou, F. [2 ]
机构
[1] Univ Mohaghegh A Dabili, Dept Math, Ardebil, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Hyers-Ulam-Rassias stability; cubic functional equation; ULAM-RASSIAS STABILITY;
D O I
10.3906/mat-0802-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we wil find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for an Euler-Lagrange type cubic functional equation 2mf(x + my) + 2f(mx - y) = (m(3) + m)[f(x + y) + f(x - y)] + 2(m(4) - 1)f(y) in Banach spaces and in left Banach modules over a unital Banach *-algebra for a fixed integer m with m not equal 0, +/- 1.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [41] Refined ULAM Stability for Euler-Lagrange Type Mappings in Hilbert Spaces
    Rassias, John Michael
    Rassias, Matina John
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 7 (F07): : 126 - 132
  • [42] Hyers-Ulam stability of an Euler-Lagrange type additive mapping
    Park, Chun-Gil
    Rassias, John Michael
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 7 (F07): : 112 - 125
  • [43] Euler-Lagrange equation for gradient-type Lagrangian and related conservation laws
    Treanta, Savin
    Dragu, Marius-Alin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 1565 - 1579
  • [44] Stability of Euler–Lagrange-Type Cubic Functional Equations in Quasi-Banach Spaces
    Anurak Thanyacharoen
    Wutiphol Sintunavarat
    Nguyen Van Dung
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 251 - 266
  • [45] Stability of Euler-Lagrange-Type Cubic Functional Equations in Quasi-Banach Spaces
    Thanyacharoen, Anurak
    Sintunavarat, Wutiphol
    Nguyen Van Dung
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) : 251 - 266
  • [46] AN APPROXIMATION OF THE ANALYTICAL SOLUTION OF THE FRACTIONAL EULER-LAGRANGE EQUATION
    Ciesielski, Mariusz
    Blaszczyk, Tomasz
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (04) : 23 - 30
  • [47] Generalized Euler-Lagrange equation for nonsmooth calculus of variations
    Skandari, M. H. Noori
    Kamyad, A. V.
    Effati, S.
    NONLINEAR DYNAMICS, 2014, 75 (1-2) : 85 - 100
  • [48] EULER-LAGRANGE EQUATION AND CONSERVATION LAWS FOR BILOCAL FIELDS
    MITA, K
    PHYSICAL REVIEW C, 1978, : 4545 - 4547
  • [49] Necessary Condition for an Euler-Lagrange Equation on Time Scales
    Dryl, Monika
    Torres, Delfim F. M.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] The validity of the Euler-Lagrange equation for solutions to variational problems
    Cellina, Arrigo
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2014, 15 (02) : 577 - 586