High-order orbital angular momentum mode generator based on twisted photonic crystal fiber

被引:90
|
作者
Fu, Cailing [1 ]
Liu, Shen [1 ]
Wang, Ying [1 ]
Bai, Zhiyong [1 ]
He, Jun [1 ]
Liao, Changrui [1 ]
Zhang, Yan [1 ]
Zhang, Feng [1 ]
Yu, Bin [1 ]
Gao, Shecheng [2 ]
Li, Zhaohui [3 ,4 ]
Wang, Yiping [1 ]
机构
[1] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Jinan Univ, China Dept Elect Engn, Guangzhou 510632, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL VORTEX GENERATION; LONG-PERIOD FIBER; CONVERTER; GRATINGS; MANIPULATION; CONVERSION; WRITTEN;
D O I
10.1364/OL.43.001786
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-order orbital angular momentum (OAM) modes, namely, OAM(+5) and OAM(+6), were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20 dB. (C) 2018 Optical Society of America
引用
收藏
页码:1786 / 1789
页数:4
相关论文
共 50 条
  • [1] Generation and manipulation of high-order orbital angular momentum in helically twisted dual-core photonic crystal fiber based on filling polyglycerol
    Wu, Tiesheng
    Feng, Zhangpeng
    Cheng, Xin
    Lan, Yujing
    Li, Zhenyu
    Huang, Yingshuang
    Tang, Yingtao
    Li, Hongyun
    Peng, Yiwei
    OPTICS EXPRESS, 2024, 32 (20): : 35159 - 35171
  • [2] Design and Analysis of a Transmission Fiber with High-Order Orbital Angular Momentum Mode
    Ke Xizheng
    Chen Yun
    Zhang Ying
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (02)
  • [3] Measurement of the Orbital Angular Momentum Spectrum in Twisted Coreless Photonic Crystal Fiber
    Roth, P.
    Wong, G. K. L.
    Beravat, R.
    Harvey, C. M.
    Frosz, M. H.
    Sopalla, R.
    Russell, P. St. J.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [4] Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber
    Wong, G. K. L.
    Kang, M. S.
    Lee, H. W.
    Biancalana, F.
    Conti, C.
    Weiss, T.
    Russell, P. St J.
    SCIENCE, 2012, 337 (6093) : 446 - 449
  • [5] Photonic crystal fiber metasurface for orbital angular momentum mode generation
    Kim, Myunghwan
    Kim, Soeun
    OPTIK, 2021, 247
  • [6] Dispersion compensation for orbital angular momentum mode based on circular photonic crystal fiber
    Liu, Exian
    Yan, Bei
    Xie, Jianlan
    Peng, Yuchen
    Gao, Feng
    Liu, Jianjun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (43)
  • [7] Orbital-angular-momentum-preserving helical Bloch modes in twisted photonic crystal fiber
    Xi, X. M.
    Wong, G. K. L.
    Frosz, M. H.
    Babic, F.
    Ahmed, G.
    Jiang, X.
    Euser, T. G.
    Russell, P. St. J.
    OPTICA, 2014, 1 (03): : 165 - 169
  • [8] Performance analysis of circularly photonic crystal fiber for orbital angular momentum mode generation
    Biswas, Bipul
    Ahmed, Kawsar
    Ramanujam, Krishnamurthy
    Paul, Bikash Kumar
    Amiri, Iraj S.
    Raja, Waseem
    OPTICAL ENGINEERING, 2019, 58 (08)
  • [9] A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission
    Zhang, Hu
    Zhang, Wenbo
    Xi, Lixia
    Tang, Xianfeng
    Zhang, Xia
    Zhang, Xiaoguang
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (13) : 1426 - 1429
  • [10] Thermally Tunable Orbital Angular Momentum Mode Generator Based on Dual-Core Photonic Crystal Fibers
    Zhang, Lianzhen
    Zhang, Xuedian
    Liu, Xuejing
    Zhou, Jun
    Yang, Na
    Du, Jia
    Ding, Xin
    NANOMATERIALS, 2021, 11 (12)