Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing
被引:76
|
作者:
Zheng, Huailiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Zheng, Huailiang
[1
]
Yang, Yuantao
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Yang, Yuantao
[1
]
Yin, Jiancheng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Yin, Jiancheng
[1
]
Li, Yuqing
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Li, Yuqing
[1
]
Wang, Rixin
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Wang, Rixin
[1
]
Xu, Minqiang
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R ChinaHarbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Xu, Minqiang
[1
]
机构:
[1] Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
Deep domain generalization;
fault diagnosis;
rolling bearing;
ROTATING MACHINERY;
ELEMENT BEARING;
SIGNAL;
NETWORKS;
MODEL;
D O I:
10.1109/TIM.2020.3016068
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Recent works suggest that using knowledge transfer strategies to tackle cross-domain diagnosis problems is promising for achieving engineering diagnosis. This article presents a diagnosis scheme for rolling bearing under a challenging domain generalization scenario, in which more potential discrepancies among multiple source domains are eliminated and only normal samples of the target domain are available during the training stage. To achieve sufficient generalization performance, a diagnosis scheme combining some a priori diagnosis knowledge and a deep domain generalization network for fault diagnosis (DDGFD) is elaborated. Through signal preprocessing steps guided by the a priori diagnosis knowledge, the inputs of DDGFD with a primary consistent meaning across domains are constructed from the vibration signal. On this basis, DDGFD would intently release its talent on learning discriminative and domain-invariant fault features from source domains, and then generalize the learned knowledge to identify unseen target samples. On cross-domain tasks organized using broad bearing data sets, the superiority of DDGFD is validated by comparing its performance with various data-driven diagnosis methods.
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Chen, Zhuyun
He, Guolin
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
He, Guolin
Li, Jipu
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Li, Jipu
Liao, Yixiao
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Liao, Yixiao
Gryllias, Konstantinos
论文数: 0引用数: 0
h-index: 0
机构:
Katholieke Univ Leuven, Dept Mech Engn, B-3000 Leuven, BelgiumSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
Gryllias, Konstantinos
Li, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China