Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing

被引:76
|
作者
Zheng, Huailiang [1 ]
Yang, Yuantao [1 ]
Yin, Jiancheng [1 ]
Li, Yuqing [1 ]
Wang, Rixin [1 ]
Xu, Minqiang [1 ]
机构
[1] Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
关键词
Deep domain generalization; fault diagnosis; rolling bearing; ROTATING MACHINERY; ELEMENT BEARING; SIGNAL; NETWORKS; MODEL;
D O I
10.1109/TIM.2020.3016068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent works suggest that using knowledge transfer strategies to tackle cross-domain diagnosis problems is promising for achieving engineering diagnosis. This article presents a diagnosis scheme for rolling bearing under a challenging domain generalization scenario, in which more potential discrepancies among multiple source domains are eliminated and only normal samples of the target domain are available during the training stage. To achieve sufficient generalization performance, a diagnosis scheme combining some a priori diagnosis knowledge and a deep domain generalization network for fault diagnosis (DDGFD) is elaborated. Through signal preprocessing steps guided by the a priori diagnosis knowledge, the inputs of DDGFD with a primary consistent meaning across domains are constructed from the vibration signal. On this basis, DDGFD would intently release its talent on learning discriminative and domain-invariant fault features from source domains, and then generalize the learned knowledge to identify unseen target samples. On cross-domain tasks organized using broad bearing data sets, the superiority of DDGFD is validated by comparing its performance with various data-driven diagnosis methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A deep transfer learning method based on stacked autoencoder for cross-domain fault diagnosis
    Deng, Ziwei
    Wang, Zhuoyue
    Tang, Zhaohui
    Huang, Keke
    Zhu, Hongqiu
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [32] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [33] Automated broad transfer learning for cross-domain fault diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 66 : 27 - 41
  • [34] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239
  • [35] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [36] Duplex adversarial domain discriminative network for cross-domain partial transfer fault diagnosis
    Liu, Fuqiang
    Deng, Wenlong
    Duan, Chaoqun
    Qin, Yi
    Luo, Jun
    Pu, Huayan
    KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [37] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] A new multichannel deep adaptive adversarial network for cross-domain fault diagnosis
    Han, Baokun
    Xing, Shuo
    Wang, Jinrui
    Zhang, Zongzhen
    Bao, Huaiqian
    Zhang, Xiao
    Jiang, Xingwang
    Liu, Zongling
    Yang, Zujie
    Ma, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [39] Domain Transferability-Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Li, Jing
    Xu, Meng
    Zhang, Shun
    Ding, Xue
    Xu, Shuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7355 - 7366
  • [40] Rolling bearing fault diagnosis based on manifold feature domain adaptation
    Zhou H.
    Huang T.
    Li Z.
    Zhong F.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (05): : 94 - 102