Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing

被引:88
作者
Zheng, Huailiang [1 ]
Yang, Yuantao [1 ]
Yin, Jiancheng [1 ]
Li, Yuqing [1 ]
Wang, Rixin [1 ]
Xu, Minqiang [1 ]
机构
[1] Harbin Inst Technol, Deep Space Explorat Res Ctr, Harbin 150001, Peoples R China
关键词
Deep domain generalization; fault diagnosis; rolling bearing; ROTATING MACHINERY; ELEMENT BEARING; SIGNAL; NETWORKS; MODEL;
D O I
10.1109/TIM.2020.3016068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent works suggest that using knowledge transfer strategies to tackle cross-domain diagnosis problems is promising for achieving engineering diagnosis. This article presents a diagnosis scheme for rolling bearing under a challenging domain generalization scenario, in which more potential discrepancies among multiple source domains are eliminated and only normal samples of the target domain are available during the training stage. To achieve sufficient generalization performance, a diagnosis scheme combining some a priori diagnosis knowledge and a deep domain generalization network for fault diagnosis (DDGFD) is elaborated. Through signal preprocessing steps guided by the a priori diagnosis knowledge, the inputs of DDGFD with a primary consistent meaning across domains are constructed from the vibration signal. On this basis, DDGFD would intently release its talent on learning discriminative and domain-invariant fault features from source domains, and then generalize the learned knowledge to identify unseen target samples. On cross-domain tasks organized using broad bearing data sets, the superiority of DDGFD is validated by comparing its performance with various data-driven diagnosis methods.
引用
收藏
页数:11
相关论文
共 47 条
[1]  
[Anonymous], 2012, ADV NEURAL INF PROCE
[2]  
[Anonymous], 2010, JMLR WORKSH C P
[3]   Hyperopt: A Python library for model selection and hyperparameter optimization [J].
Bergstra, James ;
Komer, Brent ;
Eliasmith, Chris ;
Yamins, Dan ;
Cox, David D .
Computational Science and Discovery, 2015, 8 (01)
[4]   Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation) [J].
Bonnardot, F ;
El Badaoui, M ;
Randall, RB ;
Danière, J ;
Guillet, F .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (04) :766-785
[5]  
Chen C, 2019, AAAI CONF ARTIF INTE, P3296
[6]   Comparison of envelope extraction algorithms for cardiac sound signal segmentation [J].
Choi, Samjin ;
Jiang, Zhongwei .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) :1056-1069
[7]   Deep Domain Generalization With Structured Low-Rank Constraint [J].
Ding, Zhengming ;
Fu, Yun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :304-313
[8]   Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization [J].
Ghifary, Muhammad ;
Balduzzi, David ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (07) :1414-1430
[9]   Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data [J].
Guo, Liang ;
Lei, Yaguo ;
Xing, Saibo ;
Yan, Tao ;
Li, Naipeng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (09) :7316-7325
[10]  
Hu S., 2019, UNCERTAINTY ARTIF IN, V35, P101