Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method

被引:206
作者
Hatami, M. [1 ,2 ]
Ganji, D. D. [2 ]
机构
[1] Esfarayen Univ, Engn & Tech Coll, Dept Mech Engn, Esfarayen, North Khorasan, Iran
[2] Babol Univ Technol, Fac Mech Engn, Dept Energy Convers, Babol Sar, Mazandaran, Iran
关键词
Nanofluid; Microchannel; Heat transfer; Permeability; Darcy number; FORCED-CONVECTION; NATURAL-CONVECTION; PERFORMANCE; DESIGN; FINS; OPTIMIZATION; PARAMETERS; PROFILES; MODEL;
D O I
10.1016/j.enconman.2013.10.063
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, heat transfer of a fin shaped microchannel heat sink (MCHS) cooled by Cu-water nanofluid is investigated and temperature distribution in solid section (fin) and fluid section (Cu-water) are obtained by porous media approach and least square method and the results are compared with numerical procedure. The effective thermal conductivity and viscosity of nanofluid are calculated by the Parsher and Brinkman models respectively and MCHS is considered as a porous medium proposed by Kim and Kim. Modified Darcy equation is applied to the fluid and porous medium for heat transfer between fluid and solid sections. In addition, to deal with nanofluid heat transfer, a model based on Brownian-motion of nanoparticles is used. The effects of the nanoparticles volume fraction, porosity, Darcy number, microchannel dimensions, etc. on temperature distribution, velocity and Nusselt number are considered. As an outcome, by increasing the nanoparticles volume fraction, Brownian motion of the particles which carries heat and distributes it to the surroundings increases, and consequently difference between coolant and wall temperature will become less. Also, the optimum point for MCHS design is calculated by minimizing the friction factor which obtained channel aspect ratio (alpha(s)) is 2.45. (C013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 358
页数:12
相关论文
共 48 条
[1]  
A-zisik M.N., 1993, Heat conduction
[2]   Evaluation of heat transfer augmentation in a nanofluid-cooled microchannel heat sink [J].
Abbassi, Hessamoddin ;
Aghanajafi, Cyrus .
JOURNAL OF FUSION ENERGY, 2006, 25 (3-4) :187-196
[3]   Effects of magnetic field on nanofluid forced convection in a partially heated microchannel [J].
Aminossadati, S. M. ;
Raisi, A. ;
Ghasemi, B. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (10) :1373-1382
[4]   Convective-radiative radial fins with convective base heating and convective-radiative tip cooling: Homogeneous and functionally graded materials [J].
Aziz, A. ;
Torabi, Mohsen ;
Zhang, Kaili .
ENERGY CONVERSION AND MANAGEMENT, 2013, 74 :366-376
[5]   A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity [J].
Aziz, A. ;
Bouaziz, M. N. .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (8-9) :2876-2882
[6]  
Aziz A., 2006, HEAT CONDUCTION MAPL
[7]   Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid [J].
Bhattacharya, P. ;
Samanta, A. N. ;
Chakraborty, S. .
HEAT AND MASS TRANSFER, 2009, 45 (10) :1323-1333
[8]   Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization [J].
Bouaziz, M. N. ;
Aziz, Abdul .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (12) :2776-2782
[9]   Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink [J].
Chen, Chien-Hsin ;
Ding, Chang-Yi .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :378-384
[10]   Optimum thermal design of microchannel heat sinks by the simulated annealing method [J].
Chen, Chih-Wei ;
Lee, Ji-Jen ;
Kou, Hong-Sen .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2008, 35 (08) :980-984