Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method

被引:300
作者
Chang, Tsung-Hui [1 ]
Nedic, Angelia [2 ]
Scaglione, Anna [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei 10607, Taiwan
[2] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[3] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Average consensus; constrained optimization; demand side management control; distributed optimization; primal-dual subgradient method; regression; smart grid; CONVEX-OPTIMIZATION; SUBGRADIENT METHODS; ALGORITHMS; REGRESSION;
D O I
10.1109/TAC.2014.2308612
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Various distributed optimization methods have been developed for solving problems which have simple local constraint sets and whose objective function is the sum of local cost functions of distributed agents in a network. Motivated by emerging applications in smart grid and distributed sparse regression, this paper studies distributed optimization methods for solving general problems which have a coupled global cost function and have inequality constraints. We consider a network scenario where each agent has no global knowledge and can access only its local mapping and constraint functions. To solve this problem in a distributed manner, we propose a consensus-based distributed primal-dual perturbation (PDP) algorithm. In the algorithm, agents employ the average consensus technique to estimate the global cost and constraint functions via exchanging messages with neighbors, and meanwhile use a local primal-dual perturbed subgradient method to approach a global optimum. The proposed PDP method not only can handle smooth inequality constraints but also non-smooth constraints such as some sparsity promoting constraints arising in sparse optimization. We prove that the proposed PDP algorithm converges to an optimal primal-dual solution of the original problem, under standard problem and network assumptions. Numerical results illustrating the performance of the proposed algorithm for a distributed demand response control problem in smart grid are also presented.
引用
收藏
页码:1524 / 1538
页数:15
相关论文
共 50 条
  • [31] Primal-Dual Methods for Large-Scale and Distributed Convex Optimization and Data Analytics
    Jakovetic, Dusan
    Bajovic, Dragana
    Xavier, Joao
    Moura, Jose M. F.
    PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1923 - 1938
  • [32] A Decentralized Primal-Dual Method for Constrained Minimization of a Strongly Convex Function
    Hamedani, Erfan Yazdandoost
    Aybat, Necdet Serhat
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (11) : 5682 - 5697
  • [33] A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
    Bianchi, Pascal
    Hachem, Walid
    Iutzeler, Franck
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) : 2947 - 2957
  • [34] Primal-dual algorithm for distributed optimization with local domains on signed networks
    Ren, Xiaoxing
    Li, Dewei
    Xi, Yugeng
    Pan, Lulu
    Shao, Haibin
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4930 - 4935
  • [35] A Smooth Double Proximal Primal-Dual Algorithm for a Class of Distributed Nonsmooth Optimization Problems
    Wei, Yue
    Fang, Hao
    Zeng, Xianlin
    Chen, Jie
    Pardalos, Panos
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1800 - 1806
  • [36] Projected Stochastic Primal-Dual Method for Constrained Online Learning With Kernels
    Koppel, Alec
    Zhang, Kaiqing
    Zhu, Hao
    Basar, Tamer
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (10) : 2528 - 2542
  • [37] A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
    Mancino-Ball, Gabriel
    Xu, Yangyang
    Chen, Jie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 525 - 538
  • [38] Distributed Primal-Dual Perturbation Algorithm Over Unbalanced Directed Networks
    Sakuma, Hiroaki
    Hayashi, Naoki
    Takai, Shigemasa
    IEEE ACCESS, 2021, 9 : 75324 - 75335
  • [39] A Universal Accelerated Primal-Dual Method for Convex Optimization Problems
    Luo, Hao
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 201 (01) : 280 - 312
  • [40] DAdam: A Consensus-Based Distributed Adaptive Gradient Method for Online Optimization
    Nazari, Parvin
    Tarzanagh, Davoud Ataee
    Michailidis, George
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 6065 - 6079