Cryogenic Raman Spectroscopic Studies on Common Ore-forming Fluid Systems

被引:4
|
作者
Yang, Dan [1 ]
Xiong, Xin [1 ]
Chen, Weishi [1 ]
机构
[1] Chinese Acad Geol Sci, Inst Mineral Resources, MNR Key Lab Metallogeny & Mineral Assessment, Beijing 100037, Peoples R China
来源
MINERALS | 2019年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
ore-forming fluids; quantitative analysis attempt; NaCl-MgCl2-CaCl2-H2O; cryogenic Raman spectroscopy; X-RAY-FLUORESCENCE; LA-ICP-MS; MICROPROBE SPECTROSCOPY; H2O-NACL-CACL2; SYSTEM; QUANTITATIVE-ANALYSIS; PRACTICAL ASPECTS; MAGMATIC BRINE; INCLUSIONS; BEHAVIOR; SINGLE;
D O I
10.3390/min9060363
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The composition and properties of ore-forming fluids are key to understanding the mechanisms of mineralization in ore deposits. These characteristics can be understood by studying fluid inclusions. Hydrates in fluid inclusions containing NaCl-H2O and MgCl2-H2O were studied using cryogenic Raman spectroscopy. The intensity ratio of peaks at 3401, 3464, 3514, and 3090 cm(-1) shows a positive correlation with the concentration of hydrates in the inclusions, as does the ratio of the total integrated area of the MgCl2 hydrate peak (3514 cm(-1)) to the 3090 cm(-1) peak with the concentration of MgCl2 (correlation coefficient >0.90). These correlations are important in the quantitative analysis of MgCl2 in synthetic and natural NaCl-MgCl2-CaCl2-H2O-bearing fluid inclusions. Semi-quantitative analysis of NaCl-MgCl2-H2O solutions indicates that peaks at 3437 and 3537 cm(-1) reflect the presence of NaCl in the solution. Further, a peak at 3514 cm(-1) is indicative of the presence of MgCl2. The relative intensities of these peaks may be related to the relative abundances of NaCl and MgCl2. A quantitative attempt was made on NaCl-MgCl2-CaCl2-H2O system, but it was found that quantifying NaCl, MgCl2 and CaCl2 separately in NaCl-MgCl2-CaCl2-H2O system by the secondary freezing method is difficult.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Types of hydrothermal ore-forming systems (from fluid inclusion studies)
    Prokof'ev, VY
    GEOLOGY OF ORE DEPOSITS, 1998, 40 (06) : 457 - 470
  • [2] Energy Parameters of Ore-Forming Deep Fluid Systems
    Letnikov, F. A.
    Danilov, B. S.
    Letnikova, A. F.
    DOKLADY EARTH SCIENCES, 2018, 481 (01) : 877 - 878
  • [3] Energy Parameters of Ore-Forming Deep Fluid Systems
    F. A. Letnikov
    B. S. Danilov
    A. F. Letnikova
    Doklady Earth Sciences, 2018, 481 : 877 - 878
  • [4] Synergetics of ore-forming systems
    Rusinov, VL
    GEOLOGY OF ORE DEPOSITS, 1997, 39 (01) : 96 - 98
  • [5] ORE-FORMING FLUID - CLAN CONCEPT
    DIXON, C
    MINERALOGICAL MAGAZINE AND JOURNAL OF THE MINERALOGICAL SOCIETY, 1967, 36 (277): : R13 - &
  • [6] Hydrogenic ore-forming systems
    Kislyakov, YM
    Shchetochkin, VN
    GEOLOGY OF ORE DEPOSITS, 2000, 42 (05) : 369 - 396
  • [7] Study of ore-forming fluid and ore-forming age of skarn-type iron ore in the Fanchang area
    Zhang S.
    Yang X.
    Li W.
    Wang K.
    Han C.
    Yang Y.
    Dizhi Xuebao/Acta Geologica Sinica, 2022, 96 (04): : 1297 - 1320
  • [8] Temperature and chemistry of fluids in modern seafloor ore-forming systems: A case of fluid inclusion studies
    Bortnikov, NS
    Simonov, VA
    Ikorskii, SV
    Bogdanov, YA
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A267 - A267
  • [9] In situ Raman spectroscopic investigation of the hydrothermal speciation of tungsten: Implications for the ore-forming process
    Wang, Xiaolin
    Qiu, Ye
    Lu, Jianjun
    Chou, I-Ming
    Zhang, Wenlan
    Li, Guanglai
    Hu, Wenxuan
    Li, Zhen
    Zhong, Richen
    CHEMICAL GEOLOGY, 2020, 532
  • [10] Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems
    Deng, J
    Fang, Y
    Yang, LQ
    Yang, JC
    Sun, ZS
    Wang, JP
    Ding, SJ
    Wang, QF
    ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2001, 75 (02) : 220 - 232