Cost Function Based on Gaussian Mixture Model for Parameter Estimation of a Chaotic Circuit with a Hidden Attractor

被引:64
作者
Lao, Seng-Kin [1 ]
Shekofteh, Yasser [2 ,3 ]
Jafari, Sajad [2 ]
Sprott, Julien Clinton [4 ]
机构
[1] Univ Macau, Dept Electromech Engn, Macau, Peoples R China
[2] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 158754413, Iran
[3] RCISP, Tehran, Iran
[4] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 01期
关键词
Parameter estimation; chaotic circuits; Gaussian mixture model; cost function; state space; stable equilibrium; hidden attractors; DYNAMICAL ANALYSIS; PHASE-SPACE; SYSTEM; IDENTIFICATION; SYNCHRONIZATION; CLASSIFICATION; LINEARIZATION; OSCILLATIONS; ALGORITHMS; AIZERMAN;
D O I
10.1142/S0218127414500102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new chaotic system and its corresponding circuit. This system has a special property of having a hidden attractor. Systems with hidden attractors are newly introduced and barely investigated. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. We use a geometry-based cost function to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian Mixture Model (GMM) which is fitted to the observed attractor generated by the real system in state space. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. The results show the adequacy of the proposed cost function.
引用
收藏
页数:11
相关论文
共 60 条
[1]  
[Anonymous], 2006, Pattern recognition and machine learning
[2]   Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J].
Bragin, V. O. ;
Vagaitsev, V. I. ;
Kuznetsov, N. V. ;
Leonov, G. A. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) :511-543
[3]   Parameter identification of chaotic systems using evolutionary programming approach [J].
Chang, Jen-Fuh ;
Yang, Yi-Sung ;
Liao, Teh-Lu ;
Yan, Jun-Juh .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) :2074-2079
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]   Parameter estimation for chaotic system with initial random noises by particle swarm optimization [J].
Gao, Fei ;
Lee, Ju-Jang ;
Li, Zhuoqiu ;
Tong, Hengqing ;
Lue, Xiaohong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1286-1291
[6]  
Hilborn R. C., 2000, CHAOS NONLINEAR DYNA
[7]   USING NONLINEAR MODELING OF RECONSTRUCTED PHASE SPACE AND FREQUENCY DOMAIN ANALYSIS TO IMPROVE AUTOMATIC SPEECH RECOGNITION PERFORMANCE [J].
Jafari, Ayyoob ;
Almasganj, Farshad .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03)
[8]   Statistical modeling of speech Poincareacute sections in combination of frequency analysis to improve speech recognition performance [J].
Jafari, Ayyoob ;
Almasganj, Farshad ;
Bidhendi, Maryam Nabi .
CHAOS, 2010, 20 (03)
[9]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[10]   Comment on "Parameter identification and synchronization of fractional-order chaotic systems" [Commun Nonlinear Sci Numer Simulat 2012; 17: 305-16] [J].
Jafari, Sajad ;
Golpayegani, S. M. Reza H. ;
Darabad, Mansour R. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (03) :811-814