B-YOLOX-S: A Lightweight Method for Underwater Object Detection Based on Data Augmentation and Multiscale Feature Fusion

被引:12
|
作者
Wang, Jun [1 ]
Qi, Shuman [1 ]
Wang, Chao [1 ]
Luo, Jin [1 ]
Wen, Xin [1 ]
Cao, Rui [1 ]
机构
[1] Taiyuan Univ Technol, Coll Software, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
object detection; YOLOX; data augmentation; URPC;
D O I
10.3390/jmse10111764
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
With the increasing maturity of underwater agents-related technologies, underwater object recognition algorithms based on underwater robots have become a current hotspot for academic and applied research. However, the existing underwater imaging conditions are poor, the images are blurry, and the underwater robot visual jitter and other factors lead to lower recognition precision and inaccurate positioning in underwater target detection. A YOLOX-based underwater object detection model, B-YOLOX-S, is proposed to detect marine organisms such as echinus, holothurians, starfish, and scallops. First, Poisson fusion is used for data amplification at the input to balance the number of detected targets. Then, wavelet transform is used to perform Style Transfer on the enhanced images to achieve image restoration. The clarity of the images and detection targets is further increased and the generalization of the model is enhanced. Second, a combination of BIFPN-S and FPN is proposed to fuse the effective feature layer obtained by the Backbone layer to enhance the detection precision and accelerate model detection. Finally, the localization loss function of the prediction layer in the network is replaced by EIoU_Loss to heighten the localization precision in detection. Experimental results comparing the B-YOLOX-S algorithm model with mainstream algorithms such as FasterRCNN, YOLOV3, YOLOV4, YOLOV5, and YOLOX on the URPC2020 dataset show that the detection precision and detection speed of the algorithm model have obvious advantages over other algorithm networks. The average detection accuracy mAP value is 82.69%, which is 5.05% higher than the benchmark model (YOLOX-s), and the recall rate is 8.03% higher. Thus, the validity of the algorithmic model proposed in this paper is demonstrated.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A Ship Detection Model Based on YOLOX with Lightweight Adaptive Channel Feature Fusion and Sparse Data Augmentation
    Zhang, Quan
    Huang, Yanrong
    Song, Rui
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [2] Feature Fusion-Based Data Augmentation Method for Small Object Detection
    Wang, Xin
    Zhang, Hongyan
    Liu, Qianhe
    Gong, Wei
    IEEE MULTIMEDIA, 2024, 31 (03) : 65 - 77
  • [3] Lightweight SSD object detection method based on feature fusion
    Wu Tian-cheng
    Wang Xiao-quan
    Cai Yi-jun
    Jing You-bo
    Chen Cheng-ying
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (10) : 1437 - 1444
  • [4] Data Augmentation Method for Object Detection in Underwater Environments
    Noh, Jung-min
    Jang, Ga-Ram
    Ha, Kyoung-Nam
    Park, Jae-Han
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 324 - 328
  • [5] Traffic Sign Detection Based on Lightweight Multiscale Feature Fusion Network
    Lin, Shan
    Zhang, Zicheng
    Tao, Jie
    Zhang, Fan
    Fan, Xing
    Lu, Qingchang
    SUSTAINABILITY, 2022, 14 (21)
  • [6] Lightweight camouflaged object detection model based on multilevel feature fusion
    Li, Qiaoyi
    Wang, Zhengjie
    Zhang, Xiaoning
    Du, Hongbao
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 4409 - 4419
  • [7] FFBNET : LIGHTWEIGHT BACKBONE FOR OBJECT DETECTION BASED FEATURE FUSION BLOCK
    Fan, Binqi
    Chen, Yuhao
    Qu, Jianfeng
    Chai, Yi
    Xiao, Chen
    Huang, Pengfei
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3920 - 3924
  • [8] Lightweight camouflaged object detection model based on multilevel feature fusion
    Qiaoyi Li
    Zhengjie Wang
    Xiaoning Zhang
    Hongbao Du
    Complex & Intelligent Systems, 2024, 10 : 4409 - 4419
  • [9] Lightweight Object Detection Based on Feature Soft Fusion and Adaptive Enhancement
    Hou, Weiping
    Hu, Shaohai
    Ma, Xiaole
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 114 - 119
  • [10] Underwater object detection algorithm based on channel attention and feature fusion
    Zhang Y.
    Li X.
    Sun Y.
    Liu S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2022, 40 (02): : 433 - 441