On the super fixed point property in product spaces

被引:11
作者
Wisnicki, Andrzej [1 ]
机构
[1] Marie Curie Sklodowska Univ, Math Inst, PL-20031 Lublin, Poland
关键词
super fixed point property; super-reflexive space; nonexpansive mapping; direct sum; product space;
D O I
10.1016/j.jfa.2006.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if F is a finite-dimensional Banach space and X has the super fixed point property for nonexpansive mappings, then F circle plus X has the super fixed point property with respect to a large class of norms including all l(P) norms, 1 <= p < infinity. This provides a solution to the "super-version" of the problem of Khamsi (1989). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 39 条
  • [1] [Anonymous], 1990, NONSTANDARD METHODS
  • [2] Ayerbe Toledano J.M., 1997, MEASURES NONCOMPACTN
  • [3] NORMAL STRUCTURE IN BANACH SPACES
    BELLUCE, LP
    KIRK, WA
    STEINER, EF
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1968, 26 (03) : 433 - &
  • [4] BYNUM WL, 1972, COMPOS MATH, V25, P233
  • [5] Fixed point property of direct sums
    Dhompongsa, S.
    Kaewcharoen, A.
    Kaewkhao, A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E2177 - E2188
  • [6] Elton J, 1983, CONT MATH, V18, P87
  • [7] Banach spaces which are somewhat uniformly noncreasy
    Fetter, H
    de Buen, BG
    García-Falset, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) : 444 - 455
  • [8] Fetter H., 2004, FIXED POINT THEORY A, P71
  • [9] Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings
    García-Falset, J
    Llorens-Fuster, E
    Mazcuñan-Navarro, EM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) : 494 - 514
  • [10] Banach spaces which are r-uniformly noncreasy
    García-Falset, J
    Llorens-Fuster, E
    Mazcuñán-Navarro, EM
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (7-8) : 957 - 975