THE PAIRWISE ELASTIC NET SUPPORT VECTOR MACHINE FOR AUTOMATIC FMRI FEATURE SELECTION

被引:0
作者
Lorbert, Alexander [1 ]
Ramadge, Peter J. [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2013年
关键词
Support Vector Machine; Pairwise Elastic Net; fMRI; Sparsity; Feature Selection; CLASSIFICATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A support vector machine (SVM) regularized with the Pair-wise Elastic Net (PEN) penalty is used to automatically select a sparse set of brain voxel clusters based on the IMRI responses to two stimuli classes. This requires solving the PEN-SVM quadratic program. We show how to design the PEN regularization to encode, in a graph-based fashion, the pairwise similarity structure of the voxel IMRI responses and how to control the spatial locality of the encoding using a voxel searchlight. The voxel similarity encoding is reflected in the sparse structure of the weights of trained PEN-SVM and these weights automatically select a sparse set of voxel clusters. We empirically demonstrate the effectiveness of the approach using a real-world, multi-subject fMRI dataset.
引用
收藏
页码:1036 / 1040
页数:5
相关论文
共 34 条
  • [1] Boyd S, 2004, CONVEX OPTIMIZATION, DOI DOI 10.1017/CBO9780511804441
  • [2] Bradley P. S., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P82
  • [3] Carroll Melissa K., 2006, 12 ANN M ORG HUM BRA
  • [4] Chung FR, 1997, AM MATH SOC, V92, DOI DOI 10.1090/CBMS/092
  • [5] Cuingnet R., 2010, ADV NEURAL INFORM PR, V23, P1
  • [6] COMPARE: Classification of morphological patterns using adaptive regional elements
    Fan, Yong
    Shen, Dinggang
    Gur, Ruben C.
    Gur, Raquel E.
    Davatzikos, Christos
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (01) : 93 - 105
  • [7] Friston K.J., 2003, Neuroscience databases: a practical guide, P237, DOI DOI 10.1007/978-1-4615-1079-6
  • [8] Graph implementations for nonsmooth convex programs
    Stanford University, United States
    [J]. Lect. Notes Control Inf. Sci., 2008, (95-110): : 95 - 110
  • [9] Geometric representation of high dimension, low sample size data
    Hall, P
    Marron, JS
    Neeman, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 427 - 444
  • [10] Controlling the error in fMRI: Hypothesis testing or set estimation?
    Harmany, Zachary
    Willett, Rebecca
    Singh, Aarti
    Nowak, Robert
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 552 - +