On rank two aCM bundles

被引:7
作者
Casnati, Gianfranco [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
aCM bunlde; complete intersection; del Pezzo quartic; Serre's correspondence; Ulrich bundle; DEL PEZZO THREEFOLD;
D O I
10.1080/00927872.2016.1222397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (F,O-F(1)) be a smooth polarized projective variety of dimension n. In the present paper, we prove some easy results on aCM bundles of rank 2 on F, i.e., locally free sheaves epsilon of rank 2 on F such that h(i) (F, epsilon(t)) = 0, for i = 1,...,n-1 and t is an element of Z. We obtain some results in the case of a very ample polarization when n >= 5. We apply these results in order to deal with bundles on non-degenerate complete intersection with degree up to 9. A complete description is given for the complete intersections of two quadrics when n >= 4.
引用
收藏
页码:4139 / 4157
页数:19
相关论文
共 32 条
  • [1] SOME APPLICATIONS OF BEILINSON THEOREM TO PROJECTIVE SPACES AND QUADRICS
    ANCONA, V
    OTTAVIANI, G
    [J]. FORUM MATHEMATICUM, 1991, 3 (02) : 157 - 176
  • [2] [Anonymous], ALGEBRAIC GEOMETRY
  • [3] [Anonymous], 1980, PROGR MATH
  • [4] Vector bundles on fano 3-folds without intermediate cohomology
    Arrondo, E
    Costa, L
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) : 3899 - 3911
  • [5] Arrondo E, 2007, REV MAT COMPLUT, V20, P423
  • [6] Beauville A, 2000, MICH MATH J, V48, P39
  • [7] Arithmetically Cohen-Macaulay bundles on complete intersection varieties of sufficiently high multidegree
    Biswas, Jishnu
    Ravindra, G. V.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (03) : 493 - 509
  • [8] BRUNS W, 1988, LECT NOTES MATH, V1327, P1
  • [9] STABLE ULRICH BUNDLES
    Casanellas, Marta
    Hartshorne, Robin
    Geiss, Florian
    Schreyer, Frank-Olaf
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
  • [10] ACM bundles on cubic surfaces
    Casanellas, Marta
    Hartshorne, Robin
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) : 709 - 731