Process Simulation and Economic Analysis of Pre-combustion CO2 Capture With Deep Eutectic Solvents

被引:16
|
作者
Xin, Kun [1 ]
Hashish, Mahmoud [1 ]
Roghair, Ivo [1 ]
van Sint Annaland, Martin [1 ]
机构
[1] Eindhoven Univ Technol, Chem Proc Intensificat, Dept Chem Engn & Chem, Eindhoven, Netherlands
来源
FRONTIERS IN ENERGY RESEARCH | 2020年 / 8卷 / 08期
关键词
pre-combustion CO2 capture; property study; deep eutectic solvent; rate-based model; capture cost; selexol process; MASS-TRANSFER CORRELATIONS; CARBON-DIOXIDE; PHYSICAL ABSORPTION; IONIC LIQUIDS; SOLUBILITY; EQUATION; SAFT;
D O I
10.3389/fenrg.2020.573267
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this paper is to identify firstly the most important solvent characteristics in the CO2 capture process and secondly to determine how they contribute to the total cost of CO2 separation and analyze the economic feasibility of current deep eutectic solvents (DESs) in literature. A rate-based modeling approach was adopted to simulate pre-combustion CO2 capture. The effects of the flow model and the number of segments were investigated for the Selexol process. Different mass transfer correlations due to Bravo et al. (1985), Billet and Schultes (1993) and Hanley and Chen (2012) were adopted for the rate-based models and compared with the equilibrium modelling approach. Subsequently, property and process models were developed for a mixture of decanoic acid and menthol, in equal quantities. A physical property study was conducted with this DES. The CO2 solubility is found to be very important in all rate-based models, as expected, but properties such as the surface tension, thermal conductivity, heat capacity and volatility had a minor influence on the absorption performance. The solvent viscosity strongly affects the mass transfer rate when using the Hanley and Chen (2012) correlations, whereas it plays only a small role in the other two sets of correlations. Using a high CO2 solubility as criterion, two mixtures of allyl triphenylphosphonium bromide (ATPPB) and diethylene glycol (DEG) were screened out from literature. The conventional Selexol process was set as the benchmark for the evaluation of the performances of these DESs. The optimum capture cost for Selexol process is 27.22, 26.66 and 30.84 $(2018)/tonne CO2 for the adopted correlations, respectively. When employing two of the three studied mass transfer correlations, the estimated process costs for a capture process using this DES can be similar to the costs of the Selexol process. However, when the liquid viscosity strongly affects the mass transfer rate, as is the case when using the Hanley and Chen (2012) correlations, the Selexol process remains more economical. This strongly indicates the need for further experimental and modelling studies on mass transfer rates in absorption columns (with higher viscosity liquids) to help directing the development of suitable DESs for pre-combustion CO2 capture.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Screening Deep Eutectic Solvents for CO2 Capture With COSMO-RS
    Liu, Yanrong
    Yu, Hang
    Sun, Yunhao
    Zeng, Shaojuan
    Zhang, Xiangping
    Nie, Yi
    Zhang, Suojiang
    Ji, Xiaoyan
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [22] Ionic liquids/deep eutectic solvents for CO2 capture:Reviewing and evaluating
    Yanrong Liu
    Zhengxing Dai
    Zhibo Zhang
    Shaojuan Zeng
    Fangfang Li
    Xiangping Zhang
    Yi Nie
    Lei Zhang
    Suojiang Zhang
    Xiaoyan Ji
    Green Energy & Environment, 2021, 6 (03) : 314 - 328
  • [23] CO2 capture with the help of Phosphonium-based deep eutectic solvents
    Ghaedi, Hosein
    Ayoub, Muhammad
    Sufian, Suriati
    Shariff, Azmi Mohd
    Hailegiorgis, Sintayehu Mekuria
    Khan, Saleem Nawaz
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 243 : 564 - 571
  • [24] CO2 Capture Using Deep Eutectic Solvents Integrated with Microalgal Fixation
    Brettfeld, Eliza Gabriela
    Popa, Daria Gabriela
    Dobre, Tanase
    Moga, Corina Ioana
    Constantinescu-Aruxandei, Diana
    Oancea, Florin
    CLEAN TECHNOLOGIES, 2024, 6 (01): : 32 - 48
  • [25] Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC
    Damen, Kay
    Gnutek, Radoslaw
    Kaptein, Joost
    Nannan, Nawin Ryan
    Oyarzun, Bernardo
    Trapp, Carsten
    Colonna, Piero
    van Dijk, Eric
    Gross, Joachim
    Bardow, Andre
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1214 - 1221
  • [26] Thermodynamic analysis of co2 capture cycles using pre-combustion decarbonization and membrane technologies
    Zausner, Jack
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 3, 2007, : 393 - 402
  • [27] Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture
    Zhai, Haibo
    Rubin, Edward S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (08) : 4996 - 5004
  • [28] CO2 Valorization in Deep Eutectic Solvents
    Guo, Zhenbo
    Zhang, Zhicheng
    Huang, Yuchen
    Lin, Tianxing
    Guo, Yixin
    He, Liang-Nian
    Liu, Tianfei
    CHEMSUSCHEM, 2024, 17 (18)
  • [29] Systems Analysis of SO2-CO2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents
    McGaughy, Kyle
    Reza, M. Toufiq
    ENERGIES, 2020, 13 (02)
  • [30] Comparison of physicochemical properties of choline chloride-based deep eutectic solvents for CO2 capture: Progress and outlook
    Imteyaz, Shahla
    Ingole, Pravin P.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 376