Process Simulation and Economic Analysis of Pre-combustion CO2 Capture With Deep Eutectic Solvents

被引:16
|
作者
Xin, Kun [1 ]
Hashish, Mahmoud [1 ]
Roghair, Ivo [1 ]
van Sint Annaland, Martin [1 ]
机构
[1] Eindhoven Univ Technol, Chem Proc Intensificat, Dept Chem Engn & Chem, Eindhoven, Netherlands
来源
FRONTIERS IN ENERGY RESEARCH | 2020年 / 8卷 / 08期
关键词
pre-combustion CO2 capture; property study; deep eutectic solvent; rate-based model; capture cost; selexol process; MASS-TRANSFER CORRELATIONS; CARBON-DIOXIDE; PHYSICAL ABSORPTION; IONIC LIQUIDS; SOLUBILITY; EQUATION; SAFT;
D O I
10.3389/fenrg.2020.573267
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The purpose of this paper is to identify firstly the most important solvent characteristics in the CO2 capture process and secondly to determine how they contribute to the total cost of CO2 separation and analyze the economic feasibility of current deep eutectic solvents (DESs) in literature. A rate-based modeling approach was adopted to simulate pre-combustion CO2 capture. The effects of the flow model and the number of segments were investigated for the Selexol process. Different mass transfer correlations due to Bravo et al. (1985), Billet and Schultes (1993) and Hanley and Chen (2012) were adopted for the rate-based models and compared with the equilibrium modelling approach. Subsequently, property and process models were developed for a mixture of decanoic acid and menthol, in equal quantities. A physical property study was conducted with this DES. The CO2 solubility is found to be very important in all rate-based models, as expected, but properties such as the surface tension, thermal conductivity, heat capacity and volatility had a minor influence on the absorption performance. The solvent viscosity strongly affects the mass transfer rate when using the Hanley and Chen (2012) correlations, whereas it plays only a small role in the other two sets of correlations. Using a high CO2 solubility as criterion, two mixtures of allyl triphenylphosphonium bromide (ATPPB) and diethylene glycol (DEG) were screened out from literature. The conventional Selexol process was set as the benchmark for the evaluation of the performances of these DESs. The optimum capture cost for Selexol process is 27.22, 26.66 and 30.84 $(2018)/tonne CO2 for the adopted correlations, respectively. When employing two of the three studied mass transfer correlations, the estimated process costs for a capture process using this DES can be similar to the costs of the Selexol process. However, when the liquid viscosity strongly affects the mass transfer rate, as is the case when using the Hanley and Chen (2012) correlations, the Selexol process remains more economical. This strongly indicates the need for further experimental and modelling studies on mass transfer rates in absorption columns (with higher viscosity liquids) to help directing the development of suitable DESs for pre-combustion CO2 capture.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Evaluation of Pd composite membrane for pre-combustion CO2 capture
    Goldbach, Andreas
    Bao, Feng
    Qi, Chenchen
    Bao, Chun
    Zhao, Lingfang
    Hao, Chuanyong
    Jiang, Chunhai
    Xu, Hengyong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 33 : 69 - 76
  • [22] Exergy recuperative CO2 gas separation in pre-combustion capture
    Kishimoto, Akira
    Kansha, Yasuki
    Fushimi, Chihiro
    Tsutsumi, Atsushi
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2012, 14 (03) : 465 - 474
  • [23] Deep eutectic solvents as attractive media for CO2 capture
    Trivedi, Tushar J.
    Lee, Ji Hoon
    Lee, Hyeon Jeong
    Jeong, You Kyeong
    Choi, Jang Wook
    GREEN CHEMISTRY, 2016, 18 (09) : 2834 - 2842
  • [24] Performance of hydrophobic physical solvents for pre-combustion CO2 capture at a pilot scale coal gasification facility
    Smith, Kathryn H.
    Ashkanani, Husain E.
    Thompson, Robert L.
    Culp, Jeffrey T.
    Hong, Lei
    Swanson, Mike
    Stanislowski, Joshua
    Shi, Wei
    Morsi, Badie I.
    Resnik, Kevin
    Hopkinson, David P.
    Siefert, Nicholas S.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2023, 124
  • [25] Technical and Economic Assessments of Ionic Liquids for Pre-Combustion CO2 Capture at IGCC Power Plants
    Zhai, Haibo
    Rubin, Edward S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2166 - 2172
  • [26] PERFORMANCE AND COST ANALYSIS OF ADVANCED GAS TURBINE CYCLES WITH PRE-COMBUSTION CO2 CAPTURE
    Hoffmann, Stephanie
    Bartlett, Michael
    Finkenrath, Matthias
    Evulet, Andrei
    Ursin, Tord Peter
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 2, 2008, : 663 - 671
  • [27] Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC
    Damen, Kay
    Gnutek, Radoslaw
    Kaptein, Joost
    Nannan, Nawin Ryan
    Oyarzun, Bernardo
    Trapp, Carsten
    Colonna, Piero
    van Dijk, Eric
    Gross, Joachim
    Bardow, Andre
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1214 - 1221
  • [28] Thermodynamic analysis of co2 capture cycles using pre-combustion decarbonization and membrane technologies
    Zausner, Jack
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 3, 2007, : 393 - 402
  • [29] Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture
    Zhai, Haibo
    Rubin, Edward S.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (08) : 4996 - 5004
  • [30] Cadmium based metal oxide sorbents for pre-combustion CO2 capture
    Vogt, Christian
    Knowles, Gregory P.
    Chaffee, Alan L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245