Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress

被引:39
|
作者
Kumar, Sanjeev [1 ]
Ayachit, Garima [2 ]
Sahoo, Lingaraj [1 ]
机构
[1] Indian Inst Technol Guwahai, Dept Biosci & Bioengn, Gauhati 781039, India
[2] Gujarat Univ, Dept Bot Bioinformat & Climate Change, Ahmadabad 380009, Gujarat, India
关键词
Mungbean; Vigna radiata; Drought; Transcriptomics; Differentially expressed genes; Genotypes; PROTEIN; GENES; SALT; ARABIDOPSIS; PROLINE; RICE; OVEREXPRESSION; RECONSTRUCTION; BIOSYNTHESIS; ANTIOXIDANTS;
D O I
10.1016/j.plaphy.2020.10.021
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Mungbean, is a widely cultivated pulse crop in India, experiences severe drought stress during the cultivation period. The mechanism of drought tolerance in mungbean is not well understood. In this presents study we screened 7 widely cultivated mungbean genotypes towards their drought sensitivity at seedling stage and transcriptome sequencing of drought-tolerant and susceptible genotype to understand the drought tolerance mechanism. Our physiological data such as increase in root length, shoot length, fresh weight, dry weight, relative water content (RWC), proline content, MDA content and molecular data in terms of quantitative expression of drought stress responsive genes under 3-d drought stress in mungbean suggests that, K851 seems to be most drought tolerant and PDM-139 as drought susceptible genotype. The transcriptomic study between K-851 and PDM-139 revealed 22,882 differentially expressed genes (DEGs) which were identified under drought stress, and they were mainly mapped to phytohormone signal transduction, carbon metabolism and flavonoid biosynthesis. Out of these, 10,235 genes were up-regulated and 12,647 genes were down-regulated. Furthermore, we found that, the DEGs related to, phytohormone signal transduction, carbon metabolism and flavonoid biosynthesis and they were more induced in K-851. Our data suggested that, the drought tolerant genotype K-851, scavenges the damage of drought stress by producing more amount of osmolytes, ROS scavengers and sugar biosynthesis.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [1] Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress
    You, Jun
    Zhang, Yujuan
    Liu, Aili
    Li, Donghua
    Wang, Xiao
    Dossa, Komivi
    Zhou, Rong
    Yu, Jingyin
    Zhang, Yanxin
    Wang, Linhai
    Zhang, Xiurong
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [2] Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress
    Hu, Ling
    Xie, Yan
    Fan, Shoujin
    Wang, Zongshuai
    Wang, Fahong
    Zhang, Bin
    Li, Haosheng
    Song, Jie
    Kong, Lingan
    PLANT SCIENCE, 2018, 272 : 276 - 293
  • [3] Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress
    Hu, Ling
    Lv, Xuemei
    Zhang, Yunxiu
    Du, Wanying
    Fan, Shoujin
    Kong, Lingan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [4] Metabolomic Profiling of Drought-Tolerant and Susceptible Peanut (Arachis hypogaea L.) Genotypes in Response to Drought Stress
    Gundaraniya, Srutiben A.
    Ambalam, Padma S.
    Tomar, Rukam S.
    ACS OMEGA, 2020, 5 (48): : 31209 - 31219
  • [5] Screening for drought tolerance in mungbean
    Prakash, M.
    Sunilkumar, B.
    Sathiyanarayanan, G.
    Gokulakrishnan, J.
    LEGUME RESEARCH, 2017, 40 (03) : 423 - 428
  • [6] Transcriptomic response in foliar and root tissues of a drought-tolerant Eucalyptus globulus genotype under drought stress
    Luis Ulloa, Jose
    Aguayo, Paula
    Conejera, Daniel
    Rubilar, Rafael
    Balocchi, Claudio
    Valenzuela, Sofia
    TREES-STRUCTURE AND FUNCTION, 2022, 36 (02): : 697 - 709
  • [7] Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress
    Jiang, Yuan
    Su, Shengzhong
    Chen, Hao
    Li, Shipeng
    Shan, Xiaohui
    Li, He
    Liu, Hongkui
    Dong, Haixiao
    Yuan, Yaping
    PHYSIOLOGIA PLANTARUM, 2023, 175 (02)
  • [8] Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress
    Muthusamy, Muthusamy
    Uma, Subbaraya
    Backiyarani, Suthanthiram
    Saraswathi, Marimuthu Somasundaram
    Chandrasekar, Arumugam
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [9] Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance
    Li, C.
    Yan, C.
    Sun, Q.
    Wang, J.
    Yuan, C.
    Mou, Y.
    Shan, S.
    Zhao, X.
    PLANT BIOLOGY, 2022, 24 (01) : 75 - 84
  • [10] Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars
    Abid, Muhammad
    Tian, Zhongwei
    Ata-Ul-Karim, Syed Tahir
    Liu, Yang
    Cui, Yakun
    Zahoor, Rizwan
    Jiang, Dong
    Dai, Tingbo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2016, 106 : 218 - 227