Real-Time Object Detection and Recognition on Low-Compute Humanoid Robots using Deep Learning

被引:0
|
作者
Chatterjee, Sayantan [1 ]
Zunjani, Faheem H. [1 ]
Nandi, Gora C. [1 ]
机构
[1] Indian Inst Informat Technol, Robot & Artificial Intelligence Lab, Prayagraj, Uttar Pradesh, India
来源
2020 6TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR) | 2020年
关键词
humanoid robots; object detection; object recognition; distributed computing; real-time systems;
D O I
10.1109/iccar49639.2020.9108054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We envision that in the near future, humanoid robots would share home space and assist us in our daily and routine activities through object manipulations. One of the fundamental technologies that needs to be developed for the robots is to enable them to detect objects and recognize them for effective manipulations and take real-time decisions involving the same. In this paper, we describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view and take programmable actions based on the detected objects. The proposed algorithm for object detection and localization is an empirical modification of YOLOv3 along with a distributed architecture to operate multiple robots on a central "inference engine", based on indoor experiments in multiple scenarios, with a smaller weight size and lesser computational requirements. YOLOv3 was chosen after a comparative study of bounding box algorithms was performed with an objective to choose one that strikes the perfect balance among information retention, low inference time and high accuracy for real-time object detection and localization. Quantization of the weights and re-adjusting filter sizes and layer arrangements for convolutions improved the inference time for low-resolution images from the robot's camera feed. The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot with customizable actions corresponding to the detected class labels.
引用
收藏
页码:202 / 208
页数:7
相关论文
共 50 条
  • [21] Real-Time Robotic Grasping and Localization Using Deep Learning-Based Object Detection Technique
    Farag, Mohannad
    Abd Ghafar, Abdul Nasir
    Alsibai, Mohammed Hayyan
    2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2019, : 139 - 144
  • [22] Real-Time Object Detection and Recognition Using Fixed-Wing LALE VTOL UAV
    Sonkar, Sarvesh
    Kumar, Prashant
    George, Riya Catherine
    Yuvaraj, T. P.
    Philip, Deepu
    Ghosh, A. K.
    IEEE SENSORS JOURNAL, 2022, 22 (21) : 20738 - 20747
  • [23] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [24] Real-Time Object Recognition System Using Adaptive Resolution Method for Humanoid Robot Vision Development
    Hsia, Chih-Hsien
    Chang, Wei-Hsuan
    Chiang, Jen-Shiun
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2012, 15 (02): : 187 - 196
  • [25] Deep learning based real-time tourist spots detection and recognition mechanism
    Chen, Yen-Chiu
    Yu, Kun-Ming
    Kao, Tzu-Hsiang
    Hsieh, Hao-Lun
    SCIENCE PROGRESS, 2021, 104
  • [26] Deep learning assisted real-time object recognition and depth estimation for enhancing emergency response in adaptive environment
    Faseeh, Muhammad
    Bibi, Misbah
    Khan, Murad Ali
    Kim, Do-Hyeun
    RESULTS IN ENGINEERING, 2024, 24
  • [27] Hidden Challenge in Deep-Learning Real-Time Object Detection on Edge Devices
    Nicolas, Marcus F.
    Megherbi, Dalila B.
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 547 - 551
  • [28] Real-time Object Detection with Deep Learning for Robot Vision on Mixed Reality Device
    Guo, Jiazhen
    Chen, Peng
    Jiang, Yinlai
    Yokoi, Hiroshi
    Togo, Shunta
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 82 - 83
  • [29] Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism
    Chen, Min
    Ren, Xuemei
    Yan, Zhanyi
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 772 - 777
  • [30] Real-Time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network
    Dwijayanti, Suci
    Iqbal, Muhammad
    Suprapto, Bhakti Yudho
    IEEE ACCESS, 2022, 10 : 89876 - 89886