Real-Time Object Detection and Recognition on Low-Compute Humanoid Robots using Deep Learning

被引:0
|
作者
Chatterjee, Sayantan [1 ]
Zunjani, Faheem H. [1 ]
Nandi, Gora C. [1 ]
机构
[1] Indian Inst Informat Technol, Robot & Artificial Intelligence Lab, Prayagraj, Uttar Pradesh, India
关键词
humanoid robots; object detection; object recognition; distributed computing; real-time systems;
D O I
10.1109/iccar49639.2020.9108054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We envision that in the near future, humanoid robots would share home space and assist us in our daily and routine activities through object manipulations. One of the fundamental technologies that needs to be developed for the robots is to enable them to detect objects and recognize them for effective manipulations and take real-time decisions involving the same. In this paper, we describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view and take programmable actions based on the detected objects. The proposed algorithm for object detection and localization is an empirical modification of YOLOv3 along with a distributed architecture to operate multiple robots on a central "inference engine", based on indoor experiments in multiple scenarios, with a smaller weight size and lesser computational requirements. YOLOv3 was chosen after a comparative study of bounding box algorithms was performed with an objective to choose one that strikes the perfect balance among information retention, low inference time and high accuracy for real-time object detection and localization. Quantization of the weights and re-adjusting filter sizes and layer arrangements for convolutions improved the inference time for low-resolution images from the robot's camera feed. The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot with customizable actions corresponding to the detected class labels.
引用
收藏
页码:202 / 208
页数:7
相关论文
共 50 条
  • [1] Dynamic and Real-Time Object Detection Based on Deep Learning for Home Service Robots
    Ye, Yangqing
    Ma, Xiaolon
    Zhou, Xuanyi
    Bao, Guanjun
    Wan, Weiwei
    Cai, Shibo
    SENSORS, 2023, 23 (23)
  • [2] Learning to Move an Object by the Humanoid Robots by Using Deep Reinforcement Learning
    Aslan, Simge Nur
    Tasci, Burak
    Ucar, Aysegul
    Guzelis, Cuneyt
    INTELLIGENT ENVIRONMENTS 2021, 2021, 29 : 143 - 155
  • [3] Network virtualization for real-time processing of object detection using deep learning
    Dae-Young Kim
    Ji-Hoon Park
    Youngchan Lee
    Seokhoon Kim
    Multimedia Tools and Applications, 2021, 80 : 35851 - 35869
  • [4] Network virtualization for real-time processing of object detection using deep learning
    Kim, Dae-Young
    Park, Ji-Hoon
    Lee, Youngchan
    Kim, Seokhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35851 - 35869
  • [5] Real-time Object Recognition Based on NAO Humanoid Robot
    Liu, Qianyuan
    Zhang, Chenjin
    Song, Yong
    Pang, Bao
    IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 644 - 650
  • [6] Experimental Deep Learning Object Detection in Real-time Colonoscopies
    Ciobanu, Adrian
    Luca, Mihaela
    Barbu, Tudor
    Drug, Vasile
    Olteanu, Andrei
    Vulpoi, Radu
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [7] Real-Time Detection and Recognition of Railway Traffic Signals Using Deep Learning
    Andrea Staino
    Akshat Suwalka
    Pabitra Mitra
    Biswajit Basu
    Journal of Big Data Analytics in Transportation, 2022, 4 (1): : 57 - 71
  • [8] Real-time Yoga recognition using deep learning
    Yadav, Santosh Kumar
    Singh, Amitojdeep
    Gupta, Abhishek
    Raheja, Jagdish Lal
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 9349 - 9361
  • [9] Real-time Yoga recognition using deep learning
    Santosh Kumar Yadav
    Amitojdeep Singh
    Abhishek Gupta
    Jagdish Lal Raheja
    Neural Computing and Applications, 2019, 31 : 9349 - 9361
  • [10] Real-time Facemask Recognition Using Deep Learning
    Sasikumar, R.
    Shanmugaraja, P.
    Kailash, K.
    Reddy, M. Prudhvi Charan
    Jagadeesh, S. Nikhil
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 2079 - 2085