Influence of oxide substrates on monolayer graphene doping process by thermal treatments in oxygen

被引:13
作者
Armano, Angelo [1 ,2 ]
Buscarino, Gianpiero [1 ,3 ,4 ]
Cannas, Marco [1 ]
Gelardi, Franco Mario [1 ]
Giannazzo, Filippo [4 ]
Schiliro, Emanuela [4 ]
Lo Nigro, Raffaella [4 ]
Agnello, Simonpietro [1 ,3 ,4 ]
机构
[1] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy
[2] Univ Catania, Dipartimento Fis & Astron, Via Santa Sofia 64, I-95123 Catania, Italy
[3] Univ Palermo, ATeN Ctr, Viale Sci,Edificio 18, I-90128 Palermo, Italy
[4] CNR, Ist Microelettron & Microsistemi, Str 8 5, I-95121 Catania, Italy
关键词
HIGH-K DIELECTRICS; SILICA; GENERATION; REACTIVITY; CHEMISTRY; STRAIN; ENERGY; MEMORY; WATER;
D O I
10.1016/j.carbon.2019.04.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural and the electronic properties of monolayer graphene made by chemical vapor deposition and transferred on various oxide substrates (SiO2, Al2O3, and HfO2) are investigated by Raman Spectroscopy and Atomic Force Microscopy in order to highlight the influence of the substrate on the features of p-doping obtained by O-2 thermal treatments. By varing the treatment temperature up to 400 degrees C, the distribution of the reaction sites of the substrates is evaluated. Their total concentration and the consequent highest doping available is determined and it is shown that this latter is linked to the water affinity of the substrate. Finally, by varing the exposure time to the gas up to 2 h, the kinetics of doping is investigated. The doping process is found to be better described by a diffusion limited kinetic model, ascribable to the diffusion of O-2 in the interstitial space between graphene and the substrate. After this step, the doping process is completed by a faster redox reaction between O-2 adsorbed to graphene and interstitial H2O. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:546 / 555
页数:10
相关论文
共 67 条
[1]   Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride [J].
Ahn, Gwanghyun ;
Kim, Hye Ri ;
Ko, Taeg Yeoung ;
Choi, Kyoungjun ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Hong, Byung Hee ;
Ryu, Sunmin .
ACS NANO, 2013, 7 (02) :1533-1541
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]  
[Anonymous], 2015, CARBON NANOMATERIALS
[4]   Photoinduced charge transfer from Carbon Dots to Graphene in solid composite [J].
Armano, A. ;
Buscarino, G. ;
Messina, F. ;
Sciortino, A. ;
Cannas, M. ;
Gelardi, F. M. ;
Giannazzo, F. ;
Schiliro, E. ;
Agnello, S. .
THIN SOLID FILMS, 2019, 669 :620-624
[5]   Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere [J].
Armano, A. ;
Buscarino, G. ;
Cannas, M. ;
Gelardi, F. M. ;
Giannazzo, F. ;
Schiliro, E. ;
Agnello, S. .
CARBON, 2018, 127 :270-279
[6]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[7]   Adsorption energy of oxygen molecules on graphene and two-dimensional tungsten disulfide [J].
Bagsican, Filchito Renee ;
Winchester, Andrew ;
Ghosh, Sujoy ;
Zhang, Xiang ;
Ma, Lulu ;
Wang, Minjie ;
Murakami, Hironaru ;
Talapatra, Saikat ;
Vajtai, Robert ;
Ajayan, Pulickel M. ;
Kono, Junichiro ;
Tonouchi, Masayoshi ;
Kawayama, Iwao .
SCIENTIFIC REPORTS, 2017, 7
[8]  
Baulch D.L., 1972, EVALUATED KINETIC DA, V1
[9]  
Bersuker G, 2004, MATER TODAY, V7, P26
[10]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]