Path Embedding in a Faulty Folded Hypercube

被引:0
作者
Fu, Jung-Sheng [1 ]
Chung, Ping-Che [1 ]
机构
[1] Natl United Univ, Dept Elect Engn, Miaoli, Taiwan
来源
INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I | 2012年
关键词
Folded hypercubes; bipartite graph; fault tolerant embedding; hypercube; interconnection network; HAMILTONIAN-LACEABILITY; RABIN NUMBERS; LONG PATHS; CYCLES; BIPANCONNECTIVITY; VERTICES; ELEMENTS; LINKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let F denote the faulty vertices in an n-dimensional folded hypercube FQ(n). In this paper, we show that FQ(n) contains a fault-free path with length of at least 2(n) - 2 vertical bar F vertical bar - 1 (respectively, 2(n) - 2 vertical bar F vertical bar - 2) between two arbitrary vertices x andy of odd (respectively, even) Hamming distance in FQ(n) - F if vertical bar F vertical bar <= n - 1, where n >= 3. Since FQ(n) is (n + 1)-regular and is bipartite when n is odd, both the number of faults tolerated and the length of a longest fault-free path obtained are worst-case optimal.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 26 条