Reduced Graphene Oxide Functionalized Strontium Ferrite in Poly(3,4-ethylenedioxythiophene) Conducting Network: A High-Performance EMI Shielding Material

被引:78
作者
Dalal, Jasvir [1 ]
Lather, Sushma [1 ]
Gupta, Anjli [1 ]
Tripathi, Rahul [2 ]
Maan, Anup Singh [1 ]
Singh, Kuldeep [3 ]
Ohlan, Anil [1 ]
机构
[1] Maharshi Dayanand Univ, Dept Phys, Rohtak 124001, Haryana, India
[2] Ch Bansi Lal Univ, Dept Phys, Bhiwani 127021, India
[3] Cent Electrochem Res Inst CECRI, Chennai Unit, Chennai 600113, Tamil Nadu, India
关键词
dielectric loss; EMI shielding; nanocomposites; reduced graphene oxide; MICROWAVE-ABSORPTION PROPERTIES; MAGNETIC-PROPERTIES; ELECTROMAGNETIC PROPERTIES; COMPOSITES; LIGHTWEIGHT; NANOCOMPOSITES; PROPERTY; BEHAVIOR; SHEETS; MICROSTRUCTURE;
D O I
10.1002/admt.201900023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The advent of nanotechnology leading to high-frequency device realization has resulted in a rapid increase in radiation pollution. The synthesis of core-shell morphology based poly(3,4-ethylenedioxythiophene) (PEDOT)/ reduced graphene oxide (RGO) nanocomposites incorporated with SrFe12O19 nanoparticles via in situ emulsion polymerization is a step to control ever-increasing radiation pollution. For electromagnetic (EM) shielding, impedance matching, and absorption of EM wave being the two key parameters. RGO and PEDOT establish an interconnected conducting network inside the PEDOT matrix and the resulting conductive pathway provides better impedance matching for the incident radiation. The RGO sheets decorated with ferrite nanoparticles strengthen the mechanism of the shielding by absorbing incoming EM radiation. The synergic coupling of the magneto-dielectric characteristics of nanocomposites result in high electromagnetic shielding effectiveness (SE) of 42.29 dB at 12.4 GHz for 2.5 mm thick sample. The SE is mainly dominated by absorption and also measured as a function of thickness resulting in SE(max) value of 62 dB at a thickness of 4.66 mm. The present set of nanocomposites are found to exhibit attenuation of more than 99.999% and have the potential for commercial application in EM shielding.
引用
收藏
页数:11
相关论文
共 78 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/nmat2858, 10.1038/NMAT2858]
[2]   Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites with enhanced thermal conductivity [J].
Agnihotri, Nidhi ;
Chakrabarti, Kuntal ;
De, Amitabha .
RSC ADVANCES, 2015, 5 (54) :43765-43771
[3]   Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band [J].
Bateer, Buhe ;
Zhang, Jianjao ;
Zhang, Hongchen ;
Zhang, Xiaochen ;
Wang, Chunyan ;
Qi, Haiqun .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (01) :292-298
[4]   Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon [J].
Biswas, Sourav ;
Arief, Injamamul ;
Panja, Sujit Sankar ;
Bose, Suryasarathi .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) :3030-3039
[5]   Engineering nanostructured polymer blends with controlled nanoparticle location for excellent microwave absorption: a compartmentalized approach [J].
Biswas, Sourav ;
Kar, Goutam Prasanna ;
Bose, Suryasarathi .
NANOSCALE, 2015, 7 (26) :11334-11351
[6]   Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process [J].
Bohlender, Carmen ;
Kahnes, Marcel ;
Mueller, Robert ;
Toepfer, Joerg .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (02) :1136-1146
[7]   Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption [J].
Cao, Mao-Sheng ;
Yang, Jian ;
Song, Wei-Li ;
Zhang, De-Qing ;
Wen, Bo ;
Jin, Hai-Bo ;
Hou, Zhi-Ling ;
Yuan, Jie .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6949-6956
[8]   The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J].
Cao, Mao-Sheng ;
Song, Wei-Li ;
Hou, Zhi-Ling ;
Wen, Bo ;
Yuan, Jie .
CARBON, 2010, 48 (03) :788-796
[9]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[10]   Temperature dependent microwave absorption of ultrathin graphene composites [J].
Cao, Wen-Qiang ;
Wang, Xi-Xi ;
Yuan, Jie ;
Wang, Wen-Zhong ;
Cao, Mao-Sheng .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (38) :10017-10022