A Semiparametric Bayesian Approach to Dropout in Longitudinal Studies With Auxiliary Covariates

被引:3
作者
Zhou, Tianjian [1 ,2 ]
Daniels, Michael J. [3 ]
Muller, Peter [4 ]
机构
[1] Univ Chicago, Dept Publ Hlth Sci, Chicago, IL 60637 USA
[2] Univ Texas Austin, Dept Publ Hlth Sci, Austin, TX 78712 USA
[3] Univ Florida, Dept Stat, 102 Griffin Floyd Hall,POB 118545, Gainesville, FL 32611 USA
[4] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Bayesian inference; Gaussian process; Longitudinal data; Missing data; Semiparametric model; Sensitivity analysis; PATTERN-MIXTURE MODELS; INFORMATIVE DROPOUT; REGRESSION; INFERENCE; SELECTION;
D O I
10.1080/10618600.2019.1617159
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a semiparametric Bayesian approach to missing outcome data in longitudinal studies in the presence of auxiliary covariates. We consider a joint model for the full data response, missingness, and auxiliary covariates. We include auxiliary covariates to "move" the missingness "closer" to missing at random. In particular, we specify a semiparametric Bayesian model for the observed data via Gaussian process priors and Bayesian additive regression trees. These model specifications allow us to capture nonlinear and nonadditive effects, in contrast to existing parametric methods. We then separately specify the conditional distribution of the missing data response given the observed data response, missingness, and auxiliary covariates (i.e., the extrapolation distribution) using identifying restrictions. We introduce meaningful sensitivity parameters that allow for a simple sensitivity analysis. Informative priors on those sensitivity parameters can be elicited from subject-matter experts. We use Monte Carlo integration to compute the full data estimands. Performance of our approach is assessed using simulated datasets. Our methodology is motivated by, and applied to, data from a clinical trial on treatments for schizophrenia. for this article are available online.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 51 条
  • [1] [Anonymous], 2014, STAT ANAL MISSING DA
  • [2] [Anonymous], 2014, Hierarchical Modelling and Analysis for Spatial Data
  • [3] Efficient Gaussian process regression for large datasets
    Banerjee, Anjishnu
    Dunson, David B.
    Tokdar, Surya T.
    [J]. BIOMETRIKA, 2013, 100 (01) : 75 - 89
  • [4] Pattern-mixture and selection models for analysing longitudinal data with monotone missing patterns
    Birmingham, J
    Rotnitzky, A
    Fitzmaurice, GM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 275 - 297
  • [5] Chipman Hugh, 2016, BayesTree: Bayesian Additive Regression Trees
  • [6] BART: BAYESIAN ADDITIVE REGRESSION TREES
    Chipman, Hugh A.
    George, Edward I.
    McCulloch, Robert E.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (01) : 266 - 298
  • [7] Fully Bayesian Inference under Ignorable Missingness in the Presence of Auxiliary Covariates
    Daniels, M. J.
    Wang, C.
    Marcus, B. H.
    [J]. BIOMETRICS, 2014, 70 (01) : 62 - 72
  • [8] Daniels MJ, 2008, MONOGR STAT APPL PRO, V109, P1
  • [9] Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout
    Daniels, MJ
    Hogan, JW
    [J]. BIOMETRICS, 2000, 56 (04) : 1241 - 1248
  • [10] Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
    Datta, Abhirup
    Banerjee, Sudipto
    Finley, Andrew O.
    Gelfand, Alan E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 800 - 812