On metahamiltonian groups of infinite rank

被引:10
作者
De Falco, M. [1 ]
De Giovanni, F. [1 ]
Musella, C. [1 ]
Sysak, Y. P. [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Ukrainian Natl Acad Sci, Inst Math, UA-01601 Kiev, Ukraine
关键词
Metahamiltonian group; Group of infinite rank; PROPER SUBGROUPS; FINITE RANK;
D O I
10.1016/j.jalgebra.2014.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a (generalized) soluble group of infinite rank is metahamiltonian if and only if all its subgroups of infinite rank are either abelian or normal. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 13 条
[11]  
Robinson D.J.S., 1972, FINITENESS CONDITION
[12]  
Romalis G.M., 1969, URAL GOS U MAT ZAP, V7, P195
[13]  
Romalis G. M., 1968, URAL GOS U MAT ZAP, V6, P52