On metahamiltonian groups of infinite rank

被引:10
作者
De Falco, M. [1 ]
De Giovanni, F. [1 ]
Musella, C. [1 ]
Sysak, Y. P. [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Ukrainian Natl Acad Sci, Inst Math, UA-01601 Kiev, Ukraine
关键词
Metahamiltonian group; Group of infinite rank; PROPER SUBGROUPS; FINITE RANK;
D O I
10.1016/j.jalgebra.2014.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group is metahamiltonian if all its non-abelian subgroups are normal. It is proved here that a (generalized) soluble group of infinite rank is metahamiltonian if and only if all its subgroups of infinite rank are either abelian or normal. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 13 条
[1]  
CERNIKOV NS, 1990, UKR MATH J, V42, P855
[2]   GROUPS WHOSE PROPER SUBGROUPS OF INFINITE RANK HAVE FINITE CONJUGACY CLASSES [J].
De Falco, M. ;
De Giovanni, F. ;
Musella, C. ;
Trabelsi, N. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :41-48
[3]  
De Falco M., 2014, REV MAT IBE IN PRESS
[4]   Groups with all subgroups permutable or of finite rank [J].
Dixon, Martyn R. ;
Karatas, Yalcin .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (03) :950-957
[5]   Groups with all proper subgroups (finite rank)-by-nilpotent [J].
Dixon, MR ;
Evans, MJ ;
Smith, H .
ARCHIV DER MATHEMATIK, 1999, 72 (05) :321-327
[6]   Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank [J].
Dixon, MR ;
Evans, MJ ;
Smith, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 135 (01) :33-43
[7]   On groups in which every subgroup of infinite rank is subnormal of bounded defect [J].
Evans, MJ ;
Kim, Y .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (07) :2547-2557
[8]  
Kargapolov M. I, 1962, ALGEBRA LOGIKA+, V1, P37
[9]  
M Romalis G., 1966, Ural Gos. Univ. Mat. Zap, V5, P101
[10]  
Mal'cev AL., 1956, AM MATH SOC TRANSL, V2, P1