Separability criterion for density matrices

被引:4126
作者
Peres, A
机构
[1] Department of Physics, Technion–Israel Institute of Technology, Haifa
关键词
D O I
10.1103/PhysRevLett.77.1413
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantum system consisting of two subsystems is separable if its density matrix can be written as rho=Sigma(A)W(A) rho(A)' x rho(A)' and rho(A) '' are density matrices for the two subsystems, and the positive weights w(A) satisfy Sigma w(A)=1. In this Letter, it is proved that a necessary condition for separability is that a matrix, obtained by partial transposition of rho, has only non-negative eigenvalues. Some examples show that this criterion is more sensitive than Bell's inequality for detecting quantum inseparability.
引用
收藏
页码:1413 / 1415
页数:3
相关论文
共 50 条
  • [1] Operational criterion and constructive checks for the separability of low-rank density matrices
    Horodecki, P
    Lewenstein, M
    Vidal, G
    Cirac, I
    PHYSICAL REVIEW A, 2000, 62 (03): : 10
  • [2] Separability criterion for multipartite quantum states based on the Bloch representation of density matrices
    Hassan, Ali Saif M.
    Joag, Pramod S.
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (8-9) : 773 - 790
  • [3] A separability criterion for density operators
    Rudolph, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (21): : 3951 - 3955
  • [4] The tripartite separability of density matrices of graphs
    Wang, Zhen
    Wang, Zhixi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01)
  • [5] Multipartite Separability of Density Matrices of Graphs
    Zhao, Hui
    Zhao, Jing-Yun
    Jing, Naihuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (10) : 3112 - 3126
  • [6] Separability and Fourier representations of density matrices
    Pittenger, AO
    Rubin, MH
    PHYSICAL REVIEW A, 2000, 62 (03): : 9
  • [7] Separability criteria based on the realignment of density matrices and reduced density matrices
    Shen, Shu-Qian
    Wang, Meng-Yuan
    Li, Ming
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [8] Multipartite Separability of Density Matrices of Graphs
    Hui Zhao
    Jing-Yun Zhao
    Naihuan Jing
    International Journal of Theoretical Physics, 2018, 57 : 3112 - 3126
  • [9] Universal separability criterion for arbitrary density matrices from causal properties of separable and entangled quantum states
    Skorobagatko, Gleb A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Universal separability criterion for arbitrary density matrices from causal properties of separable and entangled quantum states
    Gleb A. Skorobagatko
    Scientific Reports, 11