An approximate logic for measures

被引:9
作者
Goldbring, Isaac [1 ,2 ]
Towsner, Henry [3 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Sci Off MC 249, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Math Stat & Comp Sci, Engn Off MC 249, Chicago, IL 60607 USA
[3] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
MULTIDIMENSIONAL SZEMEREDI THEOREM; MULTIPLE ERGODIC AVERAGES; ARITHMETIC PROGRESSIONS; INVERSE THEOREM; REMOVAL LEMMA; CONVERGENCE; NORM;
D O I
10.1007/s11856-013-0054-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a logical framework for formalizing connections between finitary combinatorics and measure theory or ergodic theory that have appeared in various places throughout the literature. We develop the basic syntax and semantics of this logic and give applications, showing that the method can express the classic Furstenberg correspondence and to give short proofs of the Szemer,di Regularity Lemma and the hypergraph removal lemma. We also derive some connections between the modeltheoretic notion of stability and the Gowers uniformity norms from combinatorics.
引用
收藏
页码:867 / 913
页数:47
相关论文
共 34 条
[1]  
[Anonymous], 2011, GRADUATE STUDIES MAT
[2]  
[Anonymous], 1990, STUDIES LOGIC FDN MA
[3]  
[Anonymous], 1987, Contemp. Math.
[4]   DEDUCING THE MULTIDIMENSIONAL SZEMEREDI THEOREM FROM AN INFINITARY REMOVAL LEMMA [J].
Austin, Tim .
JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 :131-150
[5]   The logic of integration [J].
Bagheri, Seyed-Mohammad ;
Pourmahdian, Massoud .
ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (05) :465-492
[6]   Multiple recurrence and nilsequences [J].
Bergelson, V ;
Host, B ;
Kra, B ;
Ruzsa, I .
INVENTIONES MATHEMATICAE, 2005, 160 (02) :261-303
[7]  
Bergelson V, 2000, LOND MATH S, V279, P167
[8]   Generic structures and simple theories [J].
Chatzidakis, Z ;
Pillay, A .
ANNALS OF PURE AND APPLIED LOGIC, 1998, 95 (1-3) :71-92
[9]  
Chu Q, 2009, P AM MATH SOC, V137, P1363
[10]  
Elek G., 2007, LIMITS HYPERGR UNPUB