Simple Right-Alternative Unital Superalgebras Over an Algebra of Matrices of Order 2

被引:3
作者
Pchelintsev, S. V. [1 ,2 ]
Shashkov, O. V. [1 ]
机构
[1] Finance Acad Govt Russian Federat, Leningradskii Pr 49, Moscow 125993, Russia
[2] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
关键词
right-alternative superalgebra; simple superalgebra; EVEN PART; FIELD;
D O I
10.1007/s10469-019-09526-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify simple right-alternative unital superalgebras over a field of characteristic not 2, whose even part coincides with an algebra of matrices of order 2. It is proved that such a superalgebra either is a Wall double W-2|2(), or is a Shestakov superalgebra S-4|2(sigma) (characteristic 3), or is isomorphic to an asymmetric double, an 8-dimensional superalgebra depending on four parameters. In the case of an algebraically closed base field, every such superalgebra is isomorphic to an associative Wall double M-2[1], an alternative 6-dimensional Shestakov superalgebra B-4|2 (characteristic 3), or an 8-dimensional Silva-Murakami-Shestakov superalgebra.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 15 条
[11]   Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero [J].
Pchelintsev, S. V. ;
Shashkov, O. V. .
IZVESTIYA MATHEMATICS, 2015, 79 (03) :554-580
[12]  
Pchelintsev S. V., 2017, MALTSEV READINGS, P128
[13]  
Slinko A., 1974, ALGEBRA LOG, V13, P312, DOI [10.1007/BF01463203, DOI 10.1007/BF01463203]
[14]  
Svartholm N., 1942, Fysiogr. S~allsk. Lund F~orh., V12, P94
[15]  
Zhevlakov K. A., 1978, Rings That Are Nearly Associative in Russian