Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles

被引:138
作者
Kim, Hyunryung [1 ]
Che, Lihua [2 ]
Ha, Yoon [2 ]
Ryu, WonHyoung [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[2] Yonsei Univ, Dept Neurosurg, Coll Med, Seoul 120749, South Korea
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2014年 / 40卷
关键词
Silk fibroin; Hydroxyapatite; Electrospinning; Composite scaffold; Mechanical strength; IN-VITRO; SURFACE MODIFICATION; BONE; SCAFFOLDS; POLYMER; MINERALIZATION; NANOCOMPOSITE; FIBERS; CELLS;
D O I
10.1016/j.msec.2014.04.012
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Electrospun silk fibroin (SF) scaffolds provide large surface area, high porosity, and interconnection for cell adhesion and proliferation and they may replace collagen for many tissue engineering applications. Despite such advantages, electrospun SF scaffolds are still limited as bone tissue replacement due to their low mechanical strengths. While enhancement of mechanical strengths by incorporating inorganic ceramics into polymers has been demonstrated, electrospinning of a mixture of SF and inorganic ceramics such as hydroxyapatite is challenging and less studied due to the aggregation of ceramic particles within SF. In this study, we aimed to enhance the mechanical properties of electrospun SF scaffolds by uniformly dispersing hydroxyapatite (HAp) nanoparticles within SF nanofibers. HAP nanoaprticles were modified by gamma-glycidoxypropyltrimethoxysilane (GPTMS) for uniform dispersion and enhanced interfacial bonding between HAp and SF fibers. Optimal conditions for electrospinning of SF and GPTMS-modified HAp nanoparticles were identified to achieve beadless nanofibers without any aggregation of HAp nanoparticles. The MIT and SEM analysis of the osteoblasts-cultured scaffolds confirmed the biocompatibility of the composite scaffolds. The mechanical properties of the composite scaffolds were analyzed by tensile tests for the scaffolds with varying contents of HAp within SF fibers. The mechanical testing showed the peak strengths at the HAp content of 20 wt.%. The increase of HAp content up to 20 wt.% increased the mechanical properties of the composite scaffolds, while further increase above 20 wt.% disrupted the polymer chain networks within SF nanofibers and weakened the mechanical strengths. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 43 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Silk matrix for tissue engineered anterior cruciate ligaments [J].
Altman, GH ;
Horan, RL ;
Lu, HH ;
Moreau, J ;
Martin, I ;
Richmond, JC ;
Kaplan, DL .
BIOMATERIALS, 2002, 23 (20) :4131-4141
[3]   High performance additive manufactured scaffolds for bone tissue engineering application [J].
Arafat, M. Tarik ;
Lam, Christopher X. F. ;
Ekaputra, Andrew K. ;
Wong, Siew Yee ;
He, Chaobin ;
Hutmacher, Dietmar W. ;
Li, Xu ;
Gibson, Ian .
SOFT MATTER, 2011, 7 (18) :8013-8022
[4]   Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds [J].
Bhumiratana, Sarindr ;
Grayson, Warren L. ;
Castaneda, Andrea ;
Rockwood, Danielle N. ;
Gil, Eun S. ;
Kaplan, David L. ;
Vunjak-Novakovic, Gordana .
BIOMATERIALS, 2011, 32 (11) :2812-2820
[5]   Surface modification of hydroxyapatite. Part I. Dodecyl alcohol [J].
Borum-Nicholas, L ;
Wilson, OC .
BIOMATERIALS, 2003, 24 (21) :3671-3679
[6]   Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives [J].
Fu, Qiang ;
Saiz, Eduardo ;
Rahaman, Mohamed N. ;
Tomsia, Antoni P. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (07) :1245-1256
[7]   Electrodeposition on Nanofibrous Polymer Scaffolds: Rapid Mineralization, Tunable Calcium Phosphate Composition and Topography [J].
He, Chuanglong ;
Xiao, Guiyong ;
Jin, Xiaobing ;
Sun, Chenghui ;
Ma, Peter X. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (20) :3568-3576
[8]   Silk fibroin as an organic polymer for controlled drug delivery [J].
Hofmann, S ;
Foo, CTWP ;
Rossetti, F ;
Textor, M ;
Vunjak-Novakovic, G ;
Kaplan, DL ;
Merkle, HP ;
Meinel, L .
JOURNAL OF CONTROLLED RELEASE, 2006, 111 (1-2) :219-227
[9]   Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds [J].
Hofmann, Sandra ;
Hagenmueller, Henri ;
Koch, Annette M. ;
Mueller, Ralph ;
Vunjak-Novakovic, Gordana ;
Kaplan, David L. ;
Merkle, Hans P. ;
Meinel, Lorenz .
BIOMATERIALS, 2007, 28 (06) :1152-1162
[10]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543