On IA-automorphisms that fix the centre element-wise

被引:10
作者
Rai, Pradeep K. [1 ]
机构
[1] Harish Chandra Res Inst, Sch Math, Allahabad 211019, Uttar Pradesh, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2014年 / 124卷 / 02期
关键词
IA-automorphism; class-preserving automorphism; isoclinism; central automorphism; FINITE P-GROUPS;
D O I
10.1007/s12044-014-0175-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. An automorphism of G is called an IA-automorphism if it induces the identity mapping on G/gamma(2)(G), where gamma(2)(G) is the commutator sub-group of G. Let IAz(G) be the group of those IA-automorphisms, which fix the centre element-wise and let Autcent(G) be the group of central automorphisms, the automorphisms that induce the identity mapping on the central quotient. It can be observed that Autcent(G) = C-Aut(G)(IA(z)(G)). We prove that IA(z)(G) and IA(z)(H) are isomorphic for any two finite isoclinic groups G and H. Also, for a finite p-group G, we give a necessary and sufficient condition to ensure that IA(z)(G) = Autcent(G).
引用
收藏
页码:169 / 173
页数:5
相关论文
共 11 条
[1]   AUTOMORPHISMS OF A P-GROUP [J].
ADNEY, JE ;
YEN, T .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :137-&
[2]   AUTOMORPHISMS OF FREE METABELIAN GROUPS [J].
BACHMUTH, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 118 (06) :93-&
[3]   ON FINITE P-GROUPS WITH CYCLIC COMMUTATOR SUBGROUP [J].
CHENG, Y .
ARCHIV DER MATHEMATIK, 1982, 39 (04) :295-298
[4]   Direct products with Abelian automorphism groups [J].
Curran, M. J. .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) :389-397
[5]  
Curran M. J., 2004, MATH P R IR ACAD A, V104A, P223
[6]   Central automorphisms that are almost inner [J].
Curran, MJ ;
McCaughan, DJ .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) :2081-2087
[7]  
Hall P, 1940, J REINE ANGEW MATH, V182, P130
[8]   ISOCLINIC GROUPS [J].
TAPPE, J .
MATHEMATISCHE ZEITSCHRIFT, 1976, 148 (02) :147-153
[9]   On automorphisms of some finite p-groups [J].
Yadav, Manoj K. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (01) :1-11
[10]   ON FINITE p-GROUPS WHOSE CENTRAL AUTOMORPHISMS ARE ALL CLASS PRESERVING [J].
Yadav, Manoj K. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) :4576-4592