Postgrowth Substitutional Tin Doping of 2D WS2 Crystals Using Chemical Vapor Deposition

被引:34
|
作者
Chang, Ren-Jie [1 ]
Sheng, Yuewen [1 ]
Ryu, Gyeong Hee [1 ]
Mkhize, Nhlakanipho [1 ]
Chen, Tongxin [1 ]
Lu, Yang [1 ]
Chen, Jun [1 ]
Lee, Ja Kyung [1 ]
Bhaskaran, Harish [1 ]
Warner, Jamie H. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Chemical vapor deposition; 2D materials; transition metal dichalcogenides; tungsten disulfide; alloys; doping; FIELD-EFFECT TRANSISTORS; FEW-LAYER MOS2; MONOLAYER MOS2; DISSOCIATION-ENERGIES; PHOTOLUMINESCENCE; GROWTH; NANOSHEETS; ALLOYS;
D O I
10.1021/acsami.9b06588
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Doping of two-dimensional materials provides them tunable physical properties and widens their applications. Here, we demonstrate the postgrowth doping strategy in monolayer and bilayer tungsten disulfide (WS2) crystals, which utilizes a metal exchange mechanism, whereby Sn atoms become substitutional dopants in the W sites by energetically favorable replacement. We achieve this using chemical vapor deposition techniques, where high-quality grown WS2 single crystals are first grown and then subsequently reacted with a SnS precursor. Thermal control of the exchange doping mechanism is revealed, indicating that a sufficiently high enough temperature is required to create the S vacancies that are the initial binding sites for the SnS precursor and metal exchange occurrence. This results in a better control of dopant distribution compared to the tradition all-in-one approach, where dopants are added during the growth phase. The Sn dopants exhibit an n-type doping behavior in the WS2 layers based on the decreased threshold voltage obtained from transistor device measurements. Annular dark-field scanning transmission electron microscopy shows that in bilayer WS2 the Sn doping occurs only in the top layer, creating vertical heterostructures with atomic layer doping precision. This postgrowth modification opens up ways to selectively dope one layer at a time and construct mixed stoichiometry vertical heterojunctions in bilayer crystals.
引用
收藏
页码:24279 / 24288
页数:10
相关论文
共 50 条
  • [1] Formation mechanism of 2D WS2 with different morphology by chemical vapor deposition
    Meng, Lan
    Feng, Jingjing
    Yu, Yanlu
    Yan, Wei
    Li, Heng
    Wang, Xiangfu
    Yan, Xiaohong
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 114
  • [2] Nearly 90% Circularly Polarized Emission in Monolayer WS2 Single Crystals by Chemical Vapor Deposition
    Lin, Wei-Hsiang
    Tseng, Wei-Shiuan
    Went, Cora M.
    Teague, Marcus L.
    Rossman, George. R.
    Atwater, Harry A.
    Yeh, Nai-Chang
    ACS NANO, 2020, 14 (02) : 1350 - 1359
  • [3] Doping Graphene Transistors Using Vertical Stacked Monolayer WS2 Heterostructures Grown by Chemical Vapor Deposition
    Tan, Haijie
    Fan, Ye
    Rong, Youmin
    Porter, Ben
    Lau, Chit Siong
    Zhou, Yingqiu
    He, Zhengyu
    Wang, Shanshan
    Bhaskaran, Harish
    Warner, Jamie H.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 1644 - 1652
  • [4] WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films through One Single Chemical Vapor Deposition Route
    Liu, Zichen
    Murphy, Alexander William Allen
    Kuppe, Christian
    Hooper, David Charles
    Valev, Ventsislav Kolev
    Ilie, Adelina
    ACS NANO, 2019, 13 (04) : 3896 - 3909
  • [5] Bayesian Optimization for Controlled Chemical Vapor Deposition Growth of WS2
    Zhang, Feng
    Tamura, Ryo
    Zeng, Fanyu
    Kozawa, Daichi
    Kitaura, Ryo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 59109 - 59115
  • [6] High-Performance WS2 Monolayer Light-Emitting Tunneling Devices Using 2D Materials Grown by Chemical Vapor Deposition
    Sheng, Yuewen
    Chen, Tongxin
    Lu, Yang
    Chang, Ren-Jie
    Sinha, Sapna
    Warner, Jamie H.
    ACS NANO, 2019, 13 (04) : 4530 - 4537
  • [7] Direct Growth of MoS2 and WS2 Layers by Metal Organic Chemical Vapor Deposition
    Cwik, Stefan
    Mitoraj, Dariusz
    Reyes, Oliver Mendoza
    Rogalla, Detlef
    Peeters, Daniel
    Kim, Jiyeon
    Schuetz, Hanno Maria
    Bock, Claudia
    Beranek, Radim
    Devi, Anjana
    ADVANCED MATERIALS INTERFACES, 2018, 5 (16):
  • [8] 2D WS2: From Vapor Phase Synthesis to Device Applications
    Lan, Changyong
    Li, Chun
    Ho, Johnny C.
    Liu, Yong
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (07)
  • [9] Nb Doping and Alloying of 2D WS2 by Atomic Layer Deposition for 2D Transition Metal Dichalcogenide Transistors and HER Electrocatalysts
    Schulpen, Jeff J. P. M.
    Lam, Cindy H. X.
    Dawley, Rebecca A.
    Li, Ruixue
    Jin, Lun
    Ma, Tao
    Kessels, Wilhelmus M. M.
    Koester, Steven J.
    Bol, Ageeth A.
    ACS APPLIED NANO MATERIALS, 2024, 7 (07) : 7395 - 7407
  • [10] Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition
    Zhang, Guoxin
    Wang, Chunxiang
    Yan, Bing
    Ning, Bo
    Zhao, Yang
    Zhou, Dahua
    Shi, Xuan
    Chen, Sikai
    Shen, Jun
    Xiao, Zeyun
    Zhao, Hongquan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (28) : 22560 - 22572